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Abstract 

We develop a new model of the U.S., the U.S. Regional Energy Policy (USREP) model that is resolved 

for large states and regions of the U.S. and by income class and apply the model to investigate a $15 per 

ton CO2 equivalent price on greenhouse gas emissions. Previous estimates of distributional impacts of 

carbon pricing have been done outside of the model simulation and have been based on energy 

expenditure patterns of households in different regions and of different income levels. By estimating 

distributional effects within the economic model, we include the effects of changes in capital returns and 

wages on distribution and find that the effects are significant and work against the expenditure effects.  

We find the following: 

First, while results based only on energy expenditure have shown carbon pricing to be regressive we 

find the full distributional effect to be neutral or slightly progressive. This demonstrates the importance of 

tracing through all economic impacts and not just focusing on spending side impacts. 

Second, the ultimate impact of such a policy on households depends on how allowances, or the 

revenue raised from auctioning them, is used. Free distribution to firms would be highly regressive, 

benefiting higher income households and forcing lower income households to bear the full cost of the 

policy and what amounts to a transfer of wealth to higher income households. Lump sum distribution 

through equal-sized household rebates would make lower income households absolutely better off while 

shifting the costs to higher income households. Schemes that would cut taxes are generally slightly 

regressive but improve somewhat the overall efficiency of the program.   

Third, proposed legislation would distribute allowances to local distribution companies (electricity 

and natural gas distributors) and public utility commissions would then determine how the value of those 

allowances was used. A significant risk in such a plan is that distribution to households might be 

perceived as lowering utility rates  That reduced the efficiency of the policy we examined by 40 percent.   

Finally, the states on the coasts bear little cost or can benefit because of the distribution of allowance 

revenue while mid-America and southern states bear the highest costs. This regional pattern reflects 

energy consumption and energy production difference among states. Use of allowance revenue to cut 

taxes generally exacerbates these regional differences because coastal states are also generally higher 

income states, and those with higher incomes benefit more from tax cuts.  
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1. INTRODUCTION 

The United States is moving closer to enacting comprehensive climate change policy.  

President Obama campaigned in 2008 in part on a platform of re-engaging in the international 

negotiations on climate policy and supported a U.S. cap and trade policy with 100 percent 

auctioning of permits.  Congress has moved rapidly in 2009 with the House of Representatives 

voting favorably on the American Clean Energy and Security Act of 2009 (H.R. 2454) in late 

June of that year.  What will happen in the Senate is still unresolved as this is written. 

H.R. 2454 establishes a cap and trade system to reduce greenhouse gas emissions 17 percent 

below 2005 levels by 2020 and 83 percent by 2050.  In addition it contains, among other 

provisions, new energy efficiency standards for various appliances and a renewable electricity 

standard requiring retail suppliers to meet 20 percent of their electricity demand through 

renewable sources and energy efficiency by 2020 (see Holt and Whitney (2009) for a detailed 

description of the bill). 

Cap and trade legislation acts like a tax in raising the price of carbon based fuels and other 

covered inputs that release greenhouse gases.  The monies involved in a cap and trade program 

are significant.  The Congressional Budget Office estimated last June that H.R. 2454 would 

increase federal revenues by nearly $850 billion between 2010 and 2019.  Since the bulk of 

permits are freely allocated in early years of the program spending would also increase over that 

period by roughly $820 billion.
1
 

This paper uses a new computable general equilibrium model of the U.S. economy, the MIT 

U.S. Regional Energy Policy (USREP) model, to assess the distributional impacts of carbon 

pricing whether in the form of a cap-and-trade system or a carbon tax.  Sectoral detail, the 

production structure, and parameters of the USREP model are similar to those of the MIT 

Emissions Prediction and Policy Analysis (EPPA) model (Paltsev et al., 2005a).  While EPPA is 

a global model, with the U.S. one of its regions, USREP explicitly models only the U.S.  This 

sacrifice of global coverage, allows explicit modeling of regions and states within the U.S., and 

multiple household income classes in each region. As with the EPPA model, the USREP model 

has rich detail on energy production and consumption making it particularly suitable for 

analyzing energy and climate change legislation.  

With multiple regions and incomes classes the USREP model is especially useful for 

evaluating the distributional effects of policy.  Many of the provisions of H.R. 2454 are designed 

to blunt the impact of the legislation on lower and middle income households, and to balance 

regional effects.
 
  Given the potential for strong distributional effects of climate policy, whether 

something close to H.R. 2454 passes or not, attending to distributional impacts is likely to be an 

important feature of any eventual policy.
2
  To date, much of the distributional analysis has been 

done as a side calculation based on the energy and CO2 prices, simulated in models like EPPA, 

                                                 
1
 See Congressional Budget Office (2009b).  The CBO treats freely allocated permits as both revenue and spending. 

Ignoring impacts on other tax revenues the free allocation of $100 of permits would be scored as $100 of 

revenue and $100 of spending.  CBO's scoring approach is described in Congressional Budget Office (2009a).   
2
 See, for example, the testimony of Burtraw (2009) before the Senate Committee on Finance. 
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and on energy expenditure shares in different regions and among households of different income 

classes.  Such analyses fail to take into account the distribution implications of changes in wages 

and returns on capital, or how CO2 pricing will translate into different energy price impacts in 

different regions. The design of USREP allows direct consideration of these issues, 

endogenously calculating effects on each household type. We consider a number of possible 

ways of using the revenue from carbon pricing to show how these strongly affect households at 

different income levels and in different regions. 

The first focus of economists is often on the efficiency of policy and as diagramed in 

introductory economics texts these are ―welfare triangles.‖  Observers of the policy process in 

Washington often note that who gets what and who pays is a far more important consideration in 

pushing policy forward or stopping it than efficiency considerations.  Who gets what and who 

pays in the diagrams of economic texts are rectangles of which the triangles are only a small 

fraction.  A Washington economic policy quip is that rectangles trump triangles every time, a 

warning that to be relevant to policy the distributional effects are key.  Moreover, who ends up 

bearing costs in a market system is also not automatically intuitive.  Who writes the check for the 

tax bill has little to do with who actually bears the cost.  Economists refer to this as the incidence 

of a tax, and it can be passed forward to consumers, backward to asset owners, and can affect 

labor and capital returns.  USREP offers the ability to examine such distributional effects. 

2. BACKGROUND 

Carbon pricing has very similar impacts to broad based energy taxes – not surprising since 

over eighty percent of greenhouse gas emissions are associated with the combustion of fossil 

fuels (U.S. Environmental Protection Agency (2009)).  The literature on distributional 

implications across income groups of energy taxes is a long and extensive one and some general 

conclusions have been reached that help inform the distributional analysis of carbon pricing.  

First, analyses that rank households by their annual income find that excise taxes in general tend 

to be regressive (e.g. Pechman (1985) looking at excise taxes in general and Metcalf (1999) 

looking specifically at a cluster of environmental taxes).  The difficulty with this ranking 

procedure is that many households in the lowest income groups are not poor in any traditional 

sense that should raise welfare concerns.  This group includes households that are facing 

transitory negative income shocks or who are making human capital investments that will lead to 

higher incomes later in life (e.g. graduate students).  It also includes many retired households 

which may have little current income but are able to draw on extensive savings.   

That current income may not be a good measure of household well being has long been 

known and has led to a number of efforts to measure lifetime income.  This leads to the second 

major finding in the literature.  Consumption taxes – including taxes on energy – look 

considerably less regressive when lifetime income measures are used than when annual income 
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measures are used.  Studies include Davies et al. (1984), Poterba (1989, 1991), Bull et al. (1994), 

Lyon and Schwab (1995) and many others.
3
   

The lifetime income approach is an important caveat to distributional findings from annual 

incidence analyses but it relies on strong assumptions about household consumption decisions.  

In particular it assumes that households base current consumption decisions knowing their full 

stream of earnings over their lifetime.  While it is reasonable to assume that households have 

some sense of future income, it may be implausible to assume they have complete knowledge or 

that they necessarily base spending decisions on income that may be received far in the future.
4
  

It may be that the truth lies somewhere between annual and lifetime income analyses.  This paper 

takes a current income approach to sorting households. 

Turning to climate policy in particular a number of papers have attempted to measure the 

distributional impacts of carbon pricing across household income groups.  Dinan and Rogers 

(2002) build on Metcalf (1999) to consider how the distribution of allowances from a cap and 

trade program affects the distributional outcome.  Both these papers emphasize that focusing on 

the revenue from carbon pricing (either a tax or auctioned permits) provides an incomplete 

distributional analysis.  How the proceeds from carbon pricing are distributed have important 

impacts on the ultimate distributional outcome. 

The point that use of carbon revenues matters for distribution is the basis for the distributional 

and revenue neutral proposal in Metcalf (2007) for a carbon tax swap.  It is also the focus of the 

analysis in Burtraw et al. (2009).  This latter paper considers five different uses of revenue from 

a cap and trade auction focusing on income distribution as well as regional distribution.  A 

similar focus on income and regional distribution is done by Hassett et al. (2009).  This last 

paper does not consider the use of revenue but does compare both annual and lifetime income 

measures as well as a regional analysis using annual income.  Grainger and Kolstad (2009) do a 

similar analysis as that of Hassett et al. (2009) and note that the use of household equivalence 

scales can exacerbate the regressivity of carbon pricing.  Finally Burtraw et al. (2009) consider 

the distributional impacts in an expenditure side analysis where they focus on the allocation of 

permits to local distribution companies (LDCs), an issue to which we turn below. 

All of the papers above assume that the burden of carbon pricing is shifted forward to 

consumers in the form of higher energy prices (and higher prices of energy-intensive 

consumption goods and services).  That carbon pricing is passed forward to consumers follows 

from the analysis of a number of computable general equilibrium models.  Bovenberg and 

Goulder (2001), for example, find that coal prices rise by over 90 percent of a $25 per ton carbon 

tax in the short and long run (Table 2.4).
5
  This incidence result underlies their finding that only a 

                                                 
3
 Most of these studies look at a snapshot of taxes in one year relative to some proxy for lifetime income – often 

current consumption based on the permanent income hypothesis of Friedman (1957).  An exception is Fullerton 

and Rogers (1993) who model the lifetime pattern of tax payments as well as income. 
4
 On the other hand casual observation of graduate students in professional schools (business, law, medicine) make 

clear that many households are taking future income into account in their current consumption decisions. 
5
 They assume world pricing for oil and natural gas so that the gross of tax prices for these two fossil fuels rise by 

the full amount of the tax. 
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small percentage of permits need be freely allocated to energy intensive industries to compensate 

shareholders for any windfall losses from a cap and trade program.  See also Bovenberg et al. 

(2005) for more on this issue. 

Metcalf et al. (2008) consider the degree of forward shifting (higher consumer prices) and 

backward shifting (lower factor returns) over different time periods for a carbon tax policy begun 

in 2012 and slowly ramped up through 2050.  The tax on carbon emissions from coal are largely 

passed forward to consumers in all years of the policy in roughly the same magnitude found by 

Bovenberg and Goulder (2001).  Roughly ten percent of the burden of carbon pricing on crude 

oil is shifted back to oil producers initially with the share rising to roughly one-fourth by 2050 as 

consumers are able to find substitutes for oil in the longer run.  Interestingly the consumer 

burden of the carbon tax on natural gas exceeds the tax.  This reflects the sharp rise in demand 

for natural gas as an initial response to carbon pricing is to substitute gas for coal in electricity 

generation.  By 2050 the producer price is falling for reasonably stringent carbon policies.
6
 

Fullerton and Heutel (2007) construct an analytic general equilibrium model to identify the 

various key parameters and relationships that determine the ultimate burden of a tax on a 

pollutant.
7
   While the model is not sufficiently detailed to provide a realistic assessment of 

climate change impacts on the U.S. economy it illustrates critical parameters and relationships 

that drive burden results. 

The general equilibrium models discussed above all assume a representative agent in the U.S. 

thereby limiting their usefulness to considering distributional questions.  Metcalf et al. (2008) 

apply results from a representative agent model to data on U.S. households that allows them to 

draw conclusions about distributional impacts of policies but the household heterogeneity is not 

built into the model.
8
   

Several computable general equilibrium (CGE) models have been constructed to investigate 

regional implications of climate and energy in the U.S. For example, the ADAGE model, 

documented in Ross (2008), has a U.S. regional module which is usually aggregated to five or 

six regions.  The MRN-NEEM model described in Tuladhar et al. (2009) has nine U.S. regions.  

Both these models use a single representative household in each region.  

The USREP model described in the next section marks an advance in the literature and 

climate change policy modeling by allowing for heterogeneity across income groups and regions 

in the U.S.  Among other things the model allows us to test the reasonableness of previous model 

assumptions about complete forward shifting of carbon pricing to consumers.  We turn to that 

model now. 

                                                 
6
 Distributional results depend importantly on the stringency of policy.  How stringent the policy is affects whether 

carbon free technologies are adopted in the EPPA model and therefore what the relative demand for fossil fuels 

is.  In the text above we are reporting carbon tax results for a policy that limits emissions to 287 billion metric 

tons over the control period. 
7
 The paper also provides a thorough summary of the literature on the incidence impacts of environmental taxes. 

8
 A recent paper by Bento et al. (2009) marks an advance in the literature by allowing for household heterogeneity 

over income and location.  That paper considers the impact of increased U.S. gasoline taxes taking into account  

new and used car purchases along with scrappage and changes in driving behavior. 



7 

 

3. THE USREP MODEL 

 The USREP model merges together economic data from IMPLAN (Minnesota IMPLAN 

Group, 2008) with physical energy data from Energy Information Administration’s State Energy 

Data System (SEDS). Most of the basic data are at the state level and so there is flexibility in the 

regional structure.  We aggregate from the state level to regions, with the regional aggregations 

determined to capture difference in electricity costs and to help focus on how regions and states 

differ. A detailed technical description of the model and issues involved in merging these two 

data sets together into a consistent economic data base are described in an Appendix to the paper.  

Here we briefly describe the key components of the model. 

3.1 Households  

 The USREP model is a multi-region, multi-sector, multi-household CGE model of the U.S. 

economy for analyzing U.S. energy and greenhouse gas policies with a capability to assess 

impacts on regions, sectors and industries, and different household income classes. As in any 

classical Arrow-Debreu general equilibrium model, our framework combines behavioral 

assumptions on rational economic agents with the analysis of equilibrium conditions, and 

represents price-dependent market interactions as well as the origination and spending of income 

for various economic agents based on microeconomic theory.  Profit-maximizing firms produce 

goods and services using intermediate inputs from other sectors and primary factors of 

production from households.  Utility-maximizing households receive income from government 

transfers and from supplying factors of production to firms which they spend on buying goods 

and services. The government collects tax revenue which is spent on consumption and household 

transfers. The USREP model implemented here is a static model calibrated to 2006 data.  It 

distinguishes 12 regions which are aggregations of U.S. states as defined in Table 1 and 

visualized in Figure 1.
9
 Consistent with the assumption of perfect competition on product and 

factor markets, production processes exhibit constant-returns-to-scale and are modeled by nested 

constant-elasticity-of-substitution (CES) functions. A schematic overview of the nesting 

structure for each production sector is provided in the Appendix.  Non-energy activities are 

aggregated into five sectors, as shown in the table.
 10

 The energy sector, which emits several of 

the non-CO2 gases as well as CO2, is modeled in more detail.  The static USREP model is a first 

development phase toward a dynamic model similar to EPPA.  In this analysis we apply a 

relatively low CO2 price, $15 per ton CO2-equivalent with the intent of showing results relevant 

to the first few years of a climate policy.  The static version of the model incorporates electricity  

 

                                                 
9
 Alaska is a region in the model, and we simulate policy in it but we do not report results because we do not have 

the same degree of confidence in results for this region as we do for other regions.  Alaska results are highly 

sensitive to minor changes in modeling scenarios because of the small population in the state.   Merging Alaska 

with other regions, on the other hand, is problematic given the unique energy characteristics of the state. 
10

 A detailed discussion of the adopted nesting structure and its empirical relevance to reflect substitution 

possibilities among various inputs, in particular with regard to fuels and electricity, can be found in Paltsev et al, 

(2005).   
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Table 1.  USREP Model Details. 

Region a Sectors Factors 

Alaska (AK) 

California (CA) 

Florida (FL) 

New York (NY) 

New England (NENGL) 

South East (SEAST) 

North East (NEAST) 

South Central (SCENT) 

North Central (NCENT) 

Mountain (MOUNT) 

Pacific (PACIF) 

 

Non-Energy 

   Agriculture (AGRIC) 

   Services (SERV) 

   Energy-Intensive (EINT)          

   Other Industries (OTHR) 

  Transportation (TRAN) 

Energy 

   Coal (COAL) 

   Crude Oil (OIL) 

   Refined Oil (ROIL) 

   Natural Gas (GAS) 

   Electric: Fossil  (ELEC) 

Capital 

Labor 

Crude Oil Resources 

Natural Gas Resources 

Coal Resources 

Nuclear Resources 

Hydro Resources 

 

    Electric: Nuclear (NUC)  

    Electric: Hydro (HYD)  
a
Model regions are aggregations of the following U.S. states: NENGL = Maine, New Hampshire, Vermont, 

Massachusetts, Connecticut, Rhode Island; SEAST = Virginia, Kentucky, North Carolina, Tennessee, South Carolina, 
Georgia, Alabama, Mississippi; NEAST = West Virginia, Delaware, Maryland, Wisconsin, Illinois, Michigan, Indiana, 
Ohio, Pennsylvania, New Jersey, District of Columbia; SCENT = Oklahoma, Arkansas, Louisiana; NCENT = Missouri, 
North Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa; MOUNT = Montana, Idaho, Wyoming, Nevada, 
Utah, Colorado, Arizona, New Mexico; PACIF = Oregon, Washington, Hawaii. 

 

generation from fossil fuel, nuclear and hydro power and existing fuels, but not the array of 

advanced technologies in EPPA. Electricity outputs generated from different technologies are 

assumed to be perfect substitutes. We constrain the expansion of nuclear and hydro power to no 

more than a 20 percent relative to the benchmark level, or given this structure, production from 

these sources can expand without bound. Other advanced technologies would only be relevant at 

higher CO2 prices and further into the future, and so we believe the static model, as formulated, 

is appropriate to study the effects of a relatively modest GHG pricing policy implemented in the 

near term.   

 Economic modeling often distinguishes between short- and long-run effects. In the short-run 

agents have a limited ability to adjust to changed prices while in the long-run they adjust 

completely within the constraints of available technology.  Because capital is fully mobile in the 

static USREP model, the analysis conducted here is closest to a long-run result. While potential 

backstop technologies are not specified, they are unlikely to be relevant at at CO2 price of $15.  

Hence, results of the USREP show the impact we would expect of implementing a CO2 price of 

$15 (and maintaining it) allowing 20 or 30 years for the economy to adjust to this level.
11

   

 We assume labor is fully mobile across industries in a given region but is immobile across 

U.S. regions.  Labor supply is determined by the household choice between leisure and labor  

(e.g., Babiker et al. (2003)). Capital is mobile across regions and industries. We assume an 

integrated U.S. market for fossil fuel resources and assume for the core model that the regional  

 

                                                 
11

 Immobility of labor among regions is consistent with an intermediate run. Note also that a comparative statics 

analysis can be set to capture long run effects its does not capture growth effects which are important in tax 

recycling cases we investigate.    
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Figure 1. Regional Aggregation in the USREP Model. 

 

ownership of resources is distributed in proportion to capital income.
12

  Savings enters directly 

into the utility function which generates the demand for savings and makes the consumption-

investment decision endogenous. We follow an approach by Bovenberg et al. (2005) 

distinguishing between capital that is used in production of market goods and services and 

capital used in households (e.g. the housing stock).  We assume income from the former is 

subject to taxation while the imputed income from housing capital is not.  A more detailed 

discussion of the nesting structure of total consumption can be found in Paltsev et al. (2005a).  

 We distinguish nine representative household types for each region based on different income 

classes as defined in Table 2.  We use a linearly homogeneous CES structure to describe 

preferences of households implying that the income elasticity is unity and does not vary with 

income.
13

 Household heterogeneity refers both to a different structure in terms of income sources 

as well as expenditures.  The nesting structure is illustrated in Appendix A. 

3.2 Government  

 Conventional tax rates are differentiated by region and sector and include both federal and 

state taxes.  Revenue from these taxes is assumed to be spent in each region, proportional to its 

current levels. This takes account of varying state tax levels, and the current distribution of the 

spending of Federal tax revenue among the states.  Different assumptions are possible but the 

intent here to keep a focus on the implications of CO2 pricing and revenue distribution, and not  

                                                 
12

 Given the lack of data describing the regional ownership of fossil fuel resources in the U.S., we use capital income 

as a proxy. 
13

 We have experimented with a linear expenditure demand system where consumption is measured relative to 

subsistence levels, and calibrated preferences to empirically plausible values for income elasticities ranging from 

0 to 1. We found that this very slightly increases welfare costs for low income classes. Overall quantitative 

effects for the type of policy analyses that we consider here are negligible.  
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Table 2.  Income Classes Used in the USREP Model and Cumulative Population.  

Income class Description  Cumulative Population for whole 

U.S. (in %)a 

hhl 

hh10 

hh15 

hh25 

hh30 

hh50 

hh75 

hh100 

hh150 

Less than $10,000 

$10,000 to $15,000 

$15,000 to $25,000 

$25,000 to $ $30,000 

$30,000 to $50,000 

$50,000 to $75,000 

$75,000 to $100,000 

$100,000 to $150,000 

$150,000 plus 

7.3 

11.7 

21.2 

31.0 

45.3 

65.2 

78.7 

91.5 

100.0 
aBased on Consumer Expenditure Survey Data for 2006. 

 

muddy that by assuming changes in distribution of other Federal or State tax revenues.  The 

USREP model includes ad-valorem output taxes, corporate capital income taxes, and payroll 

taxes (employers’ and employees’ contribution). These tax rates are calculated on the basis of 

IMPLAN data which provides data on inter-institutional tax payments. In the case of capital 

income taxes this allows us to calculate average tax rates only. We incorporate marginal personal 

income tax rates based on data from the NBER TAXSIM tax simulator. We use the NBER data 

together with IMPLAN data on total personal income tax payments to estimate slope coefficients 

of a linear income tax schedule for each income class and region capturing a non-linear income 

tax across the entire income range.  

3.3. Trade 

Sectoral output produced in each region is converted through a constant-elasticity-of-

transformation function into goods destined for the regional, national, and international market. 

All goods are tradable. Depending on the type of commodity, we distinguish three different 

representations of intra-national regional trade. First, bilateral flows for all non-energy goods are 

represented as ―Armington‖ goods (Armington (1969)), where like goods from other regions are 

imperfectly substitutable for domestically produced goods. Second, domestically traded energy 

goods, except for electricity, are assumed to be homogeneous products, i.e. there is a national 

pool that demands domestic exports and supplies domestic imports. This assumption reflects the 

high degree of integration of intra-U.S. markets for natural gas, crude and refined oil, and coal.  

Third, we differentiate six regional electricity pools that are designed to provide an 

approximation of the existing structure of independent system operators (ISO) and the three 

major NERC interconnections in the U.S. More specifically, we distinguish the Western, Texas 

ERCOT and the Eastern NERC interconnections and in addition identify AK, NENGL, and NY 
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as separate regional pools.
14 15

 We assume that within each regional pool traded electricity is a 

homogenous good and that there is no electricity trade between regional pools.  

Analogously to the export side, we adopt the Armington (1969) assumption of product 

heterogeneity for imports. A CES function characterizes the trade-off between imported (from 

national and international sources) and locally produced varieties of the same goods. Foreign 

closure of the model is determined through a national balance-of-payments (BOP) constraint. 

Hence, the total value of U.S. exports equals the total value of U.S. imports accounting for an 

initial BOP deficit given by the base year statistics. The BOP constraint thereby determines the 

real exchange rate which indicates the (endogenous) value of the domestic currency vis-à-vis the 

foreign currency.  

The U.S. economy as a whole is modeled as a large open economy, by specifying elasticities 

for world export demand and world import supply functions.  Thus, while we do not explicitly 

model other regions, the simulations include terms of trade and competitiveness effects of 

policies that approximate results we would get with a full global model.   

4. SCENARIOS AND ANALYSIS 

 We model a greenhouse gas policy that establishes a price on all greenhouse gases of $15 per 

metric ton of carbon dioxide equivalents.
16

  We describe the scenarios in terms of a cap and trade 

system but stress that the analysis applies equally to a carbon tax applied to the same base.  A 

cap and trade system in which all permits are auctioned by the government is economically 

equivalent to a carbon tax.  In both cases carbon pricing raises the price of fossil fuels and carbon 

intensive products while raising revenue for the federal government.  A cap and trade system in 

which the permits are freely allocated according to some rule (or set of rules) can be decomposed 

into a two-part policy.  In the first part permits are fully auctioned.  In the second part the auction 

revenue is distributed in a manner that mirrors the free distribution of permits.  For that reason 

we do not focus on whether permits are auctioned or not but rather focus in the different 

scenarios on how the revenue is returned to the economy.
17

 That is, returning revenue to agents 

in the economy is equivalent, for modeling purposes, of distributing allowances to them which 

they would then sell and receive payment for equal to the CO2 price.
18
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 We identify NY and NENGL as separate pools since electricity flows with contiguous ISOs represent only a small 

fraction of total electricity generation in those regions. For example, based on own calculation from data 

provided by ISOs, net electricity trade between ISO New England and ISO New York account for less than 1% 

of total electricity produced in ISO New England. Interface flows between the New York and neighboring ISOs 

amount to about 6% of total electricity generation in ISO New York. 
15

 The regional electricity pools are thus defined as follows: NENGL, NY, TX, AK each represent a separate pool. 

The Western NERC interconnection comprises CA, MOUNT, and PACIF. The Eastern NERC interconnection 

comprises NEAST, SEAST, and FL.  
16

 The greenhouse gases are converted to carbon dioxide equivalents (CO2e) using 100 year global warming 

potentials from the IPCC Second Assessment Report, those specified in most policy measures.  
17

 Our two part decomposition suggests a broader point, emphasized by Weisbach (2009), that the differences 

between taxes and cap and trade systems are, on many dimensions, more apparent than real. 
18

 There may be political economy considerations in whether the allowances are distributed or the allowances are 

auction and the revenue distributed, but those do not affect the model results. 
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Table 3.  Overview of Scenarios.  

 

 In order to facilitate comparisons across the various scenarios we fix government revenue 

relative to GDP at the same level as in the reference (no policy) scenario, which we define as 

revenue neutrality.
19

  This means that not all carbon pricing revenue is available for recycling 

purposes as some is required to replace losses in other tax revenues as economic activity is 

affected by the policy. We impose this requirement as a constraint in the model to calculate 

endogenously in each simulation the amount needed to be held back, rather than assume a fixed 

percentage of revenue to cover losses in other tax revenues as is done by the Congressional 

Budget Office (viz. Congressional Budget Office (2009a)).  We consider seven different 

scenarios that differ in terms of how the revenues are returned to households.  In all cases policy 

effects are assessed with respect to a reference scenario where no policy changes apply.   

 Table 3 provides a full list of scenarios. In the LUMPSUM scenario the revenue from a 

carbon tax or cap and trade program is distributed by means of a uniform lump-sum transfer.  

Due to tax base erosion, and given the revenue-neutrality constraint, only some part of total 

allowance revenue can be recycled. We endogenously determine the level of lump-sum payment 

that satisfies revenue-neutrality and give all households an equal transfer amount.
20

   

 The next three scenarios recycle climate revenue by lowering existing taxes.  The PAYRTAX 

scenario uniformly reduces the payroll tax rate across all workers.  The MPITR scenario reduces 

marginal tax rates for the personal income tax by the same amount (in percentage point terms).  

Finally the CAPTAX scenario lowers capital income tax rates by the same amount (in percentage 

                                                 
19

 Some analysts define revenue neutrality as the absolute level of revenue, but we observe that over time tax 

revenue has remained at about the same share of GDP.  
20

 The USREP model, as described, has a representative household for each income class in each region.  To 

determine the distribution, we use data from the U.S. Census Bureau on the number of regional households in 

each income class, to weight the distribution to each income class by the actual number of households. 

Scenario   Description 

LUMPSUM Revenue is recycled through uniform lump-sum transfers per 

household. 

PAYRTAX Revenue is recycled through a uniform cut in payroll taxes. 

MPITR Revenue is recycled through a uniform cut in marginal personal 

income tax rates.  

CAPTAX Revenue is recycled through a uniform cut in average capital 

income tax.  

CAPITAL Revenue is allocated in proportion to capital income.  

ELE_LS Revenue is allocated in proportion to capital income except for 

revenue going to the electricity sector.  Here revenue is 

allocated in proportion to electricity consumption. 

ELE_SUB Revenue is allocated in proportion to capital income except for 

allowances going to the electricity sector.  Here revenue is 

assumed to subsidize the domestic consumer electricity price.  
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point terms).  While these three scenarios are perhaps most easily thought of in terms of a green 

tax reform they are all possible with a cap and trade system with fully auctioned permits. 

 The final three scenarios return the revenue in ways intended to represent free allocation of 

allowances.  The value of allowances allocated freely to industrial emitters or upstream 

producers of fossil fuels would generate a windfall gain for these firms, and those gains would 

accrue to equity owners of the firm.  This would be equivalent to distributing the revenue from 

auctioned permits or taxes to the equity holders in these firms.  The CAPITAL scenario assumes 

that the distribution of holdings is similar to the distribution of holdings of all capital income. 

We do not have data on how holdings of capital in carbon-intensive firms may differ among 

regions or income levels but this approach captures the fact that in general higher income 

households own more equity than low income households.  

 The American Clean Energy and Security Act of 2009 allocates a portion of permits to local 

gas and electricity distribution companies to be used to offset the higher costs of gas and 

electricity by retail customers.  The legislation prohibits the use of the permit value for lowering 

gas or electricity rates, but leaves unclear how those funds will be distributed.  It is also not clear 

how utilities subject to rate of return regulation will be treated in rate setting proceedings at the 

state level.  We assume that regulated rate-of-return industries would not be allowed to retain the 

windfall gain associated with the value of allowances distributed to them, but that the gain would 

go to rate payers.  

 While the legislation attempts to preserve the efficiency of passing through higher prices to 

consumers, an important question is whether or not that will done in a way that consumers 

perceive as effectively lowering prices.  If electricity bills include higher prices, and the funds 

are rebated separately (for example, at the end of the year) consumers may indeed perceive 

higher electricity prices in their monthly bills.  This possibility is modeled by treating the 

distribution as lump-sum rebates based on electricity expenditure in the ELE_LS scenario.  

However, if utilities rebate allowance value back to consumers in their monthly bill, even if they 

separately detail the electricity costs at high prices and the rebate, consumers may just see the 

low final bill and assume that reflects lower electricity rates.   In the ELE_SUB scenario we 

assume that the value of electricity sector allowances is passed on to consumers by subsidizing 

the domestic consumer price for electricity at an endogenously determined rate to capture this 

possible response.  In both scenarios, we assume that all non-electricity allowances are 

distributed on the basis of capital income.  The ELE_SUB scenario is an effort to capture a 

possible behavioral response by consumers in which they misperceive the true price of 

electricity, or that the intent of the legislation, to have rates reflect the full CO2 costs, is somehow 

frustrated by PUC rate setting.
21

   

 

 

                                                 
21

 Burtraw et al. (2009) also consider different consumer responses to different LDC allocation schemes.  Since they 

only focus on the electricity sector they cannot assess the overall efficiency consequences of different allocation 

schemes. 
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Table 4.  Policy Impacts on Climate. 

CO2 Emissions 5,902.0 

Non-CO2 Emissions 1,055.7 

Reduction in CO2 Emissions From Reference Case 19.3% 

Reduction in non-CO2 Emissions From Reference Case 27.1% 

Note: Emissions are reported for the Reference Case in million metric tons. 

 

 We begin by reporting results from the model for the U.S. as a single region where we focus 

on heterogeneity in income across households.  We then consider regional variation and finally 

report results in which we allow for heterogeneity across households and regions.  Before turning 

to those results, however, we report some summary impact measures for the climate policy 

analyses. 

 Table 4 reports greenhouse gas emissions in the reference (no policy) scenario as well as the 

reduction in emissions following the imposition of a $15 per metric ton carbon price.  The bulk 

of the reduction in emissions comes from carbon dioxide though the percentage reduction in non-

CO2 emissions is higher.  Aggregate emissions fall by 20.5 percent for the $15 carbon price.

 An important driver of the final burden of climate policy is its impact on fossil fuel prices.  

Table 5 reports prices for the various regions in our model as well as the carbon price as a 

percentage of that base price.  Price data are taken from the Energy Information Administration 

database on state energy consumption and expenditures and include federal and state taxes on 

fuels.  On average a $15 per ton carbon price would raise the price of coal by nearly three-

quarters if the price is fully passed forward to consumers while the prices of natural gas and 

refined oil would increase by less than ten percent. 

 How much of the carbon price is passed forward to consumers in the form of higher prices for 

goods and services as opposed to being passed back to factors of production (capital, labor) as 

well as resource owners depends on a large number of economic parameters including various 

supply and demand elasticities.  Table 6 reports results from the USREP model on the extent of 

forward and backward shifting of carbon prices for a $15 per ton CO2e charge. 

 For the U.S. as a whole the carbon price on coal is predominantly passed forward to 

purchasers of coal (primarily electric utilities).  This reflects the low level of rents in coal 

reserves given coal's abundance.  Carbon pricing on natural gas is also largely passed forward 

but to a somewhat lesser extent than for coal.  While the consumer price for coal rises by over 90 

percent of the carbon price, the consumer price for natural gas only rises by three-quarters.  For 

this analysis, we assume that world oil prices are unaffected by U.S. carbon policy so the entire 

impact is borne by consumers of refined oil products.
22

 To the extent that carbon pricing is 

passed back to factors of production and resource owners the burden of climate policy may differ  

                                                 
22

 U.S. oil consumption is sufficiently large that the assumption of zero impact is unrealistic.  In other analyses 

where we have explicitly modeled world oil production and consumption, we find that approximately 80 percent 

of the tax is passed forward in the form of higher crude oil prices, but that analysis also included measures in 

other developed countries and so the impact of just U.S. policy on oil price would be less than that.   
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Table 5.  Relationship between $15 per ton CO2-e Price and 2006 Average Fuel Prices. 

 Coal Natural Gas Refined Oil 

 Base Price 

($/short ton) 

Added 

Cost (%) 

Base Price 

($/tcf) 

Added 

Cost (%) 

Base Price 

($/gal) 

Added 

Cost (%) 

AK 43.42 66 4.77 17 2.10 6 

CA 44.07 65 9.19 9 2.31 5 

FL 52.81 54 9.43 9 2.08 6 

MOUNT 28.70 100 9.54 9 2.36 5 

NCENT 25.34 114 10.10 8 2.28 5 

NEAST 36.00 80 12.20 7 2.33 5 

NENGL 62.99 46 10.96 7 2.36 5 

NY 50.14 57 11.54 7 2.19 6 

PACIF 32.81 88 16.09 5 2.22 6 

SCENT 29.97 96 8.46 10 2.19 6 

SEAST 46.74 62 11.14 7 2.19 6 

TX 30.73 94 7.21 11 2.04 6 

US 40.31 71 10.05 8 2.22 6 

Note: No adjustment for the effects of the policy on producer price. All prices are in 2006 dollars.  
Source: Fuel prices are based on DOE EIA price data and refer to average prices over all end-use 
categories and states in a given region. 

 

significantly from the results of modeling in which carbon prices are fully passed forward.  The 

USREP model allows us to disentangle both forward and backward shifting as well as which 

factors of production (labor or capital) and resource owners are disproportionately affected.  In 

the model with regional disaggregation we can also account for differences in impacts given the 

differences (albeit minor) among regions in the degree of forward and backward shifting as 

shown in Table 6.  In the model with an aggregate consumer and one region, we find that the 

wage falls by 0.6 percentage points and the rental rate to capital 0.8 percentage points.  While 

these are relatively small percentage changes relative to the changes in energy prices, wage and 

capital income makes up virtually all of a households income, whereas changes in energy prices 

affect only a fraction of consumer expenditure.  Hence the changes in wages and returns to 

capital can be as important as changes in energy prices in determining distributional effects. 

With regional heterogeneity we find that wage rates fall by different amounts as we discuss 

below. The last column of Table 6 shows how higher energy costs affect the price of electricity.  

Nationally electricity prices rise by nearly 13 percent.  The price increase varies across regions – 

not surprising given the different mixes of fuel sources for electricity across regions as we 

discuss later.     

 The requirement that government spending as a share of GDP be unchanged means that not 

all of the revenue from carbon pricing can be recycled to households in the form of lower taxes 

or lump sum subsidies.  At the national level a carbon price of $15 per ton of CO2e would raise  
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Table 6.  Impacts on Fuel Prices Inclusive and Exclusive of GHG Charge (in %).   

  Coal Natural Gas Refined Oil Electricity 

 inclusive exclusive inclusive exclusive inclusive exclusive inclusive 

AK 50.6 -15.0 14.8 -4.6 3.0 -2.4 3.5 

CA 71.8 -6.4 10.2 -3.1 4.7 -0.2 8.5 

FL 72.8 -5.4 11.5 -3.1 5.1 0.0 9.9 

MOUNT 89.5 -10.6 9.9 -2.3 4.8 -0.2 14.8 

NCENT 76.2 -6.8 11.1 -1.7 5.3 0.2 19.8 

NEAST 69.4 -7.9 9.5 -3.3 5.1 0.0 14.2 

NENGL 73.8 -4.5 9.5 -1.4 4.9 0.0 12.0 

NY 71.8 -6.4 10.6 -0.7 5.0 0.0 7.5 

PACIF 33.1 -4.2 13.5 -1.1 4.9 0.4 1.7 

SCENT 81.5 -6.6 8.2 -2.8 5.0 0.0 12.3 

SEAST 68.8 -7.4 9.3 -2.8 5.2 0.1 15.2 

TX 76.5 -7.2 8.6 -4.2 5.0 -0.3 8.2 

US 72.9 -6.9 9.8 -2.9 5.1 0.0 12.8 

 

$83 billion in 2006 dollars.  However the change in economic activity due to the higher price of 

carbon intensive goods and services leads to a decline in non-greenhouse gas revenue of $42.1 

billion relative to the reference scenario.  In the final equilibrium just over half the revenue from 

carbon pricing is available for redistribution to households in some form or other.
23

 

4.1 Decomposing General Equilibrium Effects of Carbon Pricing 

 It is a well-established fact that carbon pricing by itself is regressive if the analysis of the 

costs is based on income class-specific energy expenditure patterns (e.g., Metcalf (2007), 

Burtraw et al. (2009) and Hassett et al. (2009)). As already noted, we find that carbon pricing 

affects income through reduced factor prices for capital, labor and fossil fuel resources, and so as 

a result the relative sources of income of households at different level incomes will affect income 

distribution.  At the lowest income levels a larger fraction of income is from government 

transfers and these transfers are not directly affected by carbon pricing. As discussed above the 

impact on capital returns is larger than the impact on wages, with higher income households 

deriving more of their income from capital returns.  These basic facts mean that the income 

effect of carbon pricing is likely to be progressive, at least partly offsetting the regressive 

expenditure effect. The virtue of a general equilibrium framework is its ability to capture both 

expenditure and income effects in a comprehensive manner.  

 

                                                 
23

 This contrasts to CBO's assumption that 25 percent of the revenue from a cap and trade system or carbon tax 

would need to be set aside to offset declines in other tax collections.  In simulations not reported here, we find 

the loss in tax revenue to be sensitive to the international trade closure assumptions—how much impact U.S. 

changes has on world prices.  The larger the impact on world prices, the less the erosion of U.S. activity with less 

impact on tax revenue. 
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Figure 2.  Decomposition of Welfare Impacts Across Income Distribution (No Revenue 

Recycling). 

 

 The core results we report all include distribution of the revenue in some manner.  To 

eliminate the muddying effect of revenue distribution we conduct simulations where we do not 

recycle the revenue. Figure 2 provides welfare impacts across income groups for three scenarios 

designed to disentangle the contribution of income and expenditure-side effects on welfare. The 

line labeled ―core model with true preferences and income shares‖ corresponds to our core model 

based on empirically observed expenditure and income data, and shows that the carbon tax is 

neutral to mildly progressive especially at higher income levels. The line labeled ―model with 

identical income shares‖ constructs a hypothetical case in which income shares across different 

income groups are equalized. As this scenario eliminates household heterogeneity on the income 

side, the distribution of costs is now shaped only by differences in energy expenditures across 

income groups. For this case, carbon pricing is distinctly regressive, consistent with previous 

research that has focused on the distributional implications only of energy expenditure patterns 

by households.  Finally, the line labeled ―model with identical preferences‖ eliminates 

heterogeneity in spending patterns across income groups.  Hence the distribution is determined 

by differences in the source of income among income classes alone.  In this case, the carbon tax 

is highly progressive. 

 Our analysis thus finds that in aggregate the distributional effects on carbon pricing are near 

neutral to slightly progressive, which differs significantly from much of the literature.  This 

comes about through the regressive effects that occur as a result of the pattern of energy 

expenditure by income class that are offset by the progressive impacts on returns to labor, 

capital, and resources.   
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Figure 3.  Welfare Impacts Across Income Distribution of Various Tax Rebates. 

 

 Also note that the estimates of welfare impact are quite large in these simulations (and larger 

than in the core results reported elsewhere).  The larger impacts are due to the fact that revenue is 

not recycled to consumers but rather simply increases the government, which in our construction 

has no welfare benefit to the households.  It is as if the revenue were thrown away.  We made 

this assumption not to imply anything about the efficacy of government programs but only to 

disentangle the direct effects of carbon pricing from any plan to distribute allowances or revenue 

from them.  In the following sections we turn back to the core results that more realistically 

involve different allowance revenue distributional approaches. 

4.2 Distributional Effects of Carbon Pricing Across Income Groups 

 Our first set of results focuses on the burden of carbon pricing across household groups 

focusing on differences in household income.  These results are most comparable to those of 

Burtraw et al. (2009) and of Hassett et al. (2009).  We focus first on the LUMPSUM and tax rate 

reduction cases.   

 Figure 3 shows the LUMPSUM to be mildly progressive while the tax rate cases are mildly 

regressive. That the LUMPSUM is mildly progressive is not surprising and is consistent with the 

findings for the cap and dividend program analyzed in Burtraw et al. (2009).  Rebating the 

revenue through a reduction in the payroll tax (PAYRTAX ) allows a reduction in the payroll tax 

rate of 1.1 percentage points.  Metcalf (2009) examined a capped payroll tax  

reduction and found that to be distributionally neutral over most of the income distribution, as 

the cap at higher income levels shifts more of the benefit to lower income households.  Not 

surprisingly, the PAYRTAX reduction leads to the smallest costs for the low income households 

and produces the least regressive outcome of the tax recycling instruments analyzed here.  At  
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Figure 4.  Welfare Impacts Across Income Distribution of Free Allocation Schemes. 

 

incomes in the highest brackets the payroll tax limit is being exceeded and so cuts in that rate has 

proportionally less benefit for these income classes than does a cut in marginal personal income 

tax rates.  The CAPTAX is somewhat more regressive at the lowest income levels but above hh50 

mirrors closely the distributional effects of the MPITR. 

 The figure illustrates that the distribution of revenues significantly affect the overall 

progressivity or regressivity of CO2 pricing.  Carbon pricing is decidedly progressive if a 

LUMPSUM distribution of the revenue is provided.  The impact on the lowest three income 

groups ranges from +0.25 to -0.05 percent of income.  In contrast, the impact on the highest four 

income groups is in the range of -0.20 to -0.30 percent of income.   

 We next consider the distributional impact of returning the revenue based on ownership of 

capital.  No policy explicitly proposes to do this but the free allocation of permits to covered 

industry groups on the basis of their emissions is equivalent to a lump sum distribution of carbon 

tax revenues to equity holders in these industries.  Note that this is the approach that has been 

used for the two major cap and trade systems to date – the U.S. sulfur dioxide trading program 

under the Clean Air Act Amendments of 1990 and the European Union's Emission Trading 

Scheme for carbon dioxide. 

 The line marked CAPITAL in Figure 4 distributes the revenue (or freely allocates permits) on 

the basis of capital income.  Ideally we would distribute the permits on the basis of holdings in 

carbon intensive industries.  As we do not have data on this distribution we assume that the 

distribution of equity holdings in carbon intensive industries is similar across income groups to 

the holdings of equity in general and that both can be proxied by capital income for which we do  
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Table 7.  Equivalent Variation by Income Class (in 2006$/yr).   

Income Groups LUMPSUM PAYRTAX MPITR CAPTAX CAPITAL ELE_LS ELE_SUB 

hh10 140 -114 -152 -159 -183 -85 -81 

hh15 73 -115 -149 -161 -186 -103 -113 

hh25 -18 -128 -159 -181 -204 -137 -157 

hh30 -99 -119 -163 -197 -229 -174 -196 

hh50 -305 -163 -191 -185 -222 -241 -316 

hh75 -304 -133 -145 -145 -172 -224 -292 

hh100 -357 -159 -97 -95 -71 -178 -273 

hh150 -506 -207 -42 -61 50 -136 -276 

 

have data.
24

  The distribution based on this rebate policy is sharply regressive with welfare 

falling by a third of one percent for the lowest income groups while rising slightly for the highest 

income groups. 

 While we do not model H.R. 2454 here, an interesting feature of the Bill is a complex permit 

allocation scheme that includes allocation of permits to local distribution companies for natural 

gas and electricity to be used to compensate utility consumers for the higher gas and electricity 

prices they will face from carbon pricing.  Our cases, while focusing just on electricity, illustrate 

how such a system may work if consumers perceive the true electricity price (ELE_LS) or see the 

allowance value rebate as effectively reducing rates (ELE_SUB) but note that these cases, 

especially other aspects of them, were not designed to represent H.R. 2454.  In the ELE_LS 

scenario we model the distribution as a lump sum allocation to households proportional to their 

electricity consumption, while in ELE_SUB we cut residential rates by the amount needed to 

reduce the total household electricity bills by the value of allowances distributed to LDCs.  We 

determine the number of allowances allocated to LDCs to be just that needed to cover emissions 

from the electricity sector—so that they need to neither buy nor sell allowances. As Figure 3 

indicates this dampens the regressivity of the free allocation scenario considerably compared 

with the CAPITAL scenario. 

 In ELE_SUB, the distributional effects are dampened further so that the policy is nearer 

neutral, slightly penalizing households in the upper middle income range.  However, all 

households except the lowest income level are actually worse off than in ELE_LS.   Subsidizing 

the electricity prices substantially—in a few regions electricity prices are actually lower than in 

the no policy case—means total residential electricity consumption is higher than in ELE_LS. 

Consumers have less incentive to reduce electricity use.  They face low electricity bills but 

someone in the economy must bear the cost of producing extra electricity.  The fact that more 

electricity is produced raises the total cost of electricity by about $22 per household.  Instead of 

households bearing the cost directly, it affects returns on capital, and so the cost is 

disproportionately borne by higher income households. Thus, ELE_SUB achieves a nearly 

                                                 
24

 This approach has been taken by, among others, Parry (2004) and Dinan and Rogers (2002) among others. 
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neutral or even slightly progressive result (comparing low to upper middle income households) 

but by making nearly all incomes groups worse off, and none substantially better off.  Since we 

enforce tax revenue neutrality across all scenarios, the somewhat larger economic cost of the 

ELE_SUB policy lowers tax revenue and more of CO2 revenue must be retained to offset the tax 

revenue loss. Thus, somewhat less of the revenue is available to be redistributed.  Table 7 shows 

the welfare impact of carbon pricing from the various scenarios reported in 2006 dollars per 

household per year.  These are the same basic results in Figures 2 and 3, just reported in absolute 

dollar levels rather than as a share of income.  

 The results from this section are consistent with earlier research that assumes that the entire 

burden of carbon pricing is shifted forward to consumers in the form of higher prices.  As shown 

above carbon pricing by itself is mildly progressive and the use of the revenue significantly 

affects the ultimate distribution.  Rebates that lower marginal tax rates in general lead to a 

regressive result of CO2 pricing.  A lump sum distribution of the revenue that is uniform across 

households is progressive though other lump sum distributions can be devised (e.g. allocations to 

industry based on emissions) that are decidedly regressive. 

 While distributional impacts of carbon pricing for different income levels is of concern to 

policy makers, regional impacts are also of concern.  We turn to an analysis of regional impact 

next. 

4.3 Distribution of Carbon Pricing Across Regions 

 Different regions of the country vary in important ways that may affect the regional 

distribution of greenhouse gas policy impacts.  Figure 5 presents information on carbon intensity 

(greenhouse gas emissions per dollar of GDP) and energy intensity (energy consumption per 

dollar of GDP) by region.   

 Energy intensity varies dramatically with the South Central region of the country consuming 

over three times as much energy per dollar of GDP as the U.S. average while New England and 

New York consume roughly half the national average of energy per dollar of GDP.  Variation in 

the intensity of greenhouse gas emissions is lower but tracks energy intensity reasonably closely.   

 Figure 6 presents data on electricity generation by fuel source for the various regions in the 

reference case scenario (no policy).  Nationally over half the electricity generated comes from 

coal, followed by natural gas and nuclear power (19 percent each), hydropower (six percent) and 

refined oil (two percent).
25

   The regions that rely heavily on coal and have little nuclear or hydro 

power have higher than average greenhouse gas intensities.  

 Figure 7 shows greenhouse gas emissions by region while Figure 8 shows the percentage 

reduction in emissions by region for the carbon pricing policy with lump sum redistribution of 

revenues.  Table 8 shows total emissions in the reference scenario and the reduction following  

                                                 
25

 These are production estimates from the reference case of the USREP model.  The model does not include non-

hydro renewable electricity.  In 2006 non-hydro renewable power accounted for just under 2.5 percent of 

electricity generation. 
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Figure 5.  GHG and Energy Intensity by Region. 

Figure 6.  Regional Electricity Generation by Fuel Source. 

 

the policy implementation.  Not surprisingly regions that are carbon intensive yield a larger 

percentage reduction in emissions than relatively less carbon intensive regions. 

 An important issue that affects regional economic impacts of the policy is the ownership of 

capital and resources, especially those most affected by climate policy.  At issue is whether 

resources such as coal, oil, and gas within a region are mainly owned by households in the region 

or whether those assets are owned equally by households across the country.  The IMPLAN and 

Consumer Expenditure Survey data do not have detailed wealth data and no other data exist that 

would allow us to attribute the ownership of regional equity by region.  For general equity, we 

assume a national pool so that households in each region own a proportion of the national pool—

they do not, for example, disproportionately own equity of firms in their home region.  For fossil  
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Figure 7. Greenhouse Gas Emissions in Reference Scenario. 

 

Figure 8.  Reduction in Greenhouse Gas Emissions by Region. 

 

energy resources, we have made this same assumption, and constructed an alternative polar case 

where all regional resources are owned within the region.
26

  There is most likely a positive 

correlation between resource and company ownership (if for no other reason than some 

companies are organized as partnerships or sole proprietorships with owners living locally).  Our 

base assumption, that resource and company ownership simply mirrors national wealth holding 

patterns, ignores this correlation.  But many of these resources are owned by large publicly 

traded corporations with shares owned by investors across the country.  The right answer is 

somewhere between these cases, and we suspect more towards to national ownership case.  Thus, 

while the assumption that resource ownership is entirely local is extreme we construct such a 

scenario to show the sensitivity of results to regional ownership patterns.   

                                                 
26

 We assume agricultural land resources in a region are owned regionally. 
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Table 8. Total Emissions and Reductions by Region. 

 Total Emissions % Reduction 

US 6957.7 27.3% 

NEAST 1788.4 24.3% 

SEAST 1168.5 24.8% 

TX 794.7 15.1% 

MOUNT 639.5 28.3% 

NCENT 649.1 27.0% 

CA 514.8 8.9% 

SCENT 415.0 16.2% 

FL 286.6 11.8% 

NY 214.9 10.8% 

NENGL 199.1 12.6% 

PACIF 176.1 8.9% 

Note: Emissions are in millions of metric tons of CO2e for 2006. 

Figure 9.  Welfare Impacts by Region. 

 

 Figure 9 shows the welfare impacts of the carbon pricing policy assuming lump sum 

recycling of the revenue under these two scenarios of energy resource (coal, oil, gas) ownership, 

with the national ownership case labeled ―resource ownership across regions‖  and the other 

labeled ―resource ownership within regions‖.  We focus on the LUMPSUM scenario for 

examining contrasting regional resource allocation assumption scenarios. The range is from a 

loss of 0.3 percent to a gain of just over 0.05 percent in the ―resource ownership across regions‖ 

case.  This widens to a loss of 0.5 percent to a gain of almost 0.1 percent in the ―resource 

ownership within regions‖ case, with those regions with significant fossil resources showing 

greater losses, and those without lower losses or greater gains.    
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Table 9.  Regional Electricity Prices. 

Region Price ($/MMBTU) 

NY 44.75 

NENGL 39.69 

CA 37.66 

PACIF 32.70 

FL 30.62 

TX 30.52 

NEAST 25.17 

SCENT 22.20 

SEAST 20.89 

MOUNT 20.57 

NCENT 19.35 

US 30.15 

Source: EIA SEDS. Prices are averages across end-use categories for 2006. 

 

 Table 9 shows the costs of electricity in the various regions for 2006 in the reference 

scenario, and comparing generation source with regional effects shows that regions with large 

shares of electricity generated from hydro and/or nuclear power lose little or actually gain, and 

those relying more on coal generated electricity bear costs. Those states with the lowest welfare 

costs tend to be states with higher than average electricity prices pre-policy.  This suggests that 

prior action that reduced carbon intensity in those regions (or favorable non-fossil resource 

conditions) contributes to the lower costs borne by residents of those regions.
27

 

 Figure 10 shows regional results for the different tax recycling cases compared against the 

LUMPSUM scenario shown in the previous figure.  These are the cases previously discussed for 

the U.S. as whole, where revenue is recycled through reductions in capital income taxes, payroll 

taxes or income taxes.  While the differences in impacts for the various recycling approaches are 

quite similar at the national level (the U.S. bars), the different recycling approaches have more 

heterogeneity across regions.  These cases tend to amplify the regional spread we saw in the 

LUMPSUM case, especially the PAYRTAX case. In that case, the South Central region 

experiences a 0.55 percent reduction in welfare, up from about 0.3 in the LUMPSUM case while 

California experiences a 0.11 percent gain, up from about a 0.05 loss.  The spread rises from just 

over 0.3 to 0.66. The effects of the CAPTAX and MPITR are in a similar direction but less 

pronounced.  Regions with higher incomes and, in the case of the PAYRTAX, a relatively larger 

share of the population employed, tend to benefit more from the tax recycling cases, shifting 

revenue to them from other states, where as the LUMPSUM distribution is affected directly by 

population.   

                                                 
27

 We are not suggesting that those prior actions were taken for GHG mitigation efforts.  But the result of those 

actions has led to lower emissions and lower costs of any greenhouse gas pricing policy. 
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Figure 10. Welfare Impacts by Regions: Alternative Recycling Options. 

Figure 11.  Free Permit Allocation: Different Allocation Methods. 

 

 The regional economic impacts we show in Figure 11 in the free allocation scenarios are even 

more varied, however, some of the large differences come about because the ELE_SUB simply 

has much larger costs in all regions.  In that case, the spread across regions is 0.94 percent.  Free 

allocation to covered industries (CAPITAL) leads to a spread equal to 0.66 percent.  The ELE_LS 

is closest to the LUMPSUM case with a maximal spread of 0.45.  The CAPITAL case favors the  
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Table 10. Residential Electricity Price (% Change from Reference Case). 

  ELE_LS ELE_SUB 

CA 8.5 -0.1 

FL 9.9 1.3 

MOUNT 14.8 6.1 

NCENT 19.8 10.9 

NEAST 14.2 5.5 

NENGL 12.0 3.4 

NY 7.5 -1.0 

PACIF 1.6 -6.7 

SCENT 12.3 3.6 

SEAST 15.2 6.5 

TX 8.2 -0.4 

US 12.8 4.1 

 

wealthier regions with larger ownership of capital. The ELE_LS and ELE_SUB differences from 

the CAPITAL case are driven by differences in household electricity consumption among  

regions as that determines allowance allocation beyond that allocated to capital.  Higher income 

regions will tend, other things equal, to use more residential electricity, but differences in climate 

as it affects air conditioning and heating will also have an effect.  

 To further understand the effects of ELE_SUB and ELE_LS it is useful to examine the 

electricity price changes shown in Table 10.  In ELE_SUB we directly allocate allowance 

revenue to households through reduction in electricity rates.  As can be seen, in California, the 

Pacific region, Texas and New York electricity rates in this case actually fall compared with the 

no policy baseline.  Florida’s electricity rates rise only by 1.3%, significantly below the U.S. 

average.  These are regions where the allocation of allowance revenue offsets more of the 

electricity cost rise than the U.S. average, and so they all gain in the ELE_LS relative to the 

LUMPSUM case.  

 Figures 10 and 11, by showing the U.S. average cost, also show the efficiency effects of the 

different revenue allocation schemes.  As should be expected LUMPSUM, CAPITAL, and 

ELE_LS have an identical effect, and it is about -.15% of total income. The tax recycling cases 

reduce the cost by about 12 to 13%, with only slight differences among them.  Some analyses 

have shown bigger gains from revenue recycling, especially when cuts are directed at capital 

taxation.  In all cases, our assumption of revenue neutrality reduces the available revenue for 

recycling by about ½.  Analyses of revenue recycling that did not enforce revenue neutrality 

assumption would be expected to thus generate twice the gain.  The revenue loss is also more 

substantial than has sometimes been estimated.  In part this stems from specification of marginal 

tax rates on personal income. Lower GDP has a more than proportional effect on tax revenue.  

 We also find the revenue loss to be sensitive to how we close international trade in the model. 

Lower foreign trade supply elasticities lower the revenue loss to 30 to 40% of the auction 
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revenue. With regard to capital taxation, its greater benefit in reducing the cost of the policy is 

typically due to its effect over time on the growth rate of the economy.  In the static model we 

apply here such growth effects are not captured.  While our analysis is relevant to the 

distributional effects of these policies with long run adjustment of the capital stock to carbon 

pricing, to consider the full effects, especially of capital tax recycling over the longer term, 

requires a dynamic model that includes effects on growth. ELE_SUB raises the welfare cost 

from 0.15% to 0.21%, a 40% increase in the policy cost, because it introduces inefficiency in the 

cap and trade system.
28

 That is a substantial and perhaps surprisingly large increase in the cost. 

However, what this scenario essentially does is to greatly reduce the incentive to conserve 

electricity in the residential sector, which accounts for on the order of 1/3 of U.S. electricity 

consumption.   That has further general equilibrium effects—not only is more electricity used but 

it is more costly electricity because generators use more expensive lower CO2 generation to 

avoid the CO2 price.  The larger economic loss, leads to lower tax revenue, and then less of the 

CO2 tax revenue is available to be redistributed to households. 

 Lastly we consider how income heterogeneity interacts with regional heterogeneity.  Figure 

12 shows differences in welfare impacts among income groups by region where revenues are 

returned on an equal lump sum basis to households.  The broad pattern of the LUMPSUM results 

we saw at the national level, moderately progressive effects leading to positive income effects 

for the poorest households and costs for higher income households, is the same in all regions.  

Thus, the most important reason for differences among regions for households in a particular 

household income level are differences for the region that affect all households in the region.  

This result is fairly intuitive, if climatic conditions lead to more or less energy consumption or 

the regions relies more or less on carbon intensive electricity it affects all households similarly.    

 To better see particular differences in the distribution effects among regions we normalize 

each region's burden of impact for each income group by the impact on the hh30 group and show 

this result in Figure 13.  In that way, we can focuses specifically on the differences in within 

region progressivity.  The impact on households in Texas and South Central states, for example, 

appears to be more progressive, while Florida is the least progressive.  Other states and regions 

fall in between these cases. 

 Figures 14 – 19 show the distributions across households within regions for the other 

scenarios that we modeled.  Again, for the most part, the different recycling schemes do not 

produce strongly different effects in different regions with regard to progressivity or regressivity. 

The personal income tax, capital tax, and lump sum recycling to capital owners are generally 

regressive in most regions.  An exception is the South Central region where most of these 

schemes are fairly neutral across income classes.  The allocations of allowances to households  

based on electricity use are fairly neutral in most regions.  Again, the South Central region is 

something of an exception where this allocation leads to a progressive result.  

                                                 
28

 All cases implemented a $15/ton CO2 price. An additional effect of reducing electricity prices is that economy-

wide emissions are somewhat higher, and so the cost of achieving the same emissions level would be somewhat 

greater than we show here. 
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 On balance the losses across regions by income group do not appear to differ dramatically for 

most revenue recycling approaches.  The differences are most marked when benefits are 

mandated to be directed to electricity consumers and especially when those benefits are 

misperceived as a reduction in the price of electricity. 

     

Figure 12. Income by Region Welfare Impacts. 

Figure 13.  Normalized Income by Region Welfare Impacts. 
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Figure 14.  Income by Region Welfare Impacts: Reduction in Personal Income Tax. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Income by Region Welfare Impacts: Reduction in Payroll Tax. 
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Figure 16.  Income by Region Welfare Impacts: Reduction in Capital Income Tax. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.   Income by Region Welfare Impacts: Freely Allocated Permits to Capital 

Owners. 



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.   Income by Region Welfare Impacts: Freely Allocated Permits and Permits 

Directed to Electricity Consumers (Lump-sum). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  Income by Region Welfare Impacts: Freely Allocated Permits and Permits 

Directed to Electricity Consumers (Perceived as Price Reduction). 
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5. CONCLUSION 

The USREP model was constructed with multiple regions and multiple households in each 

region to allow us to determine the distributional effects of a GHG mitigation policy 

endogenously.  Past work has often used data on energy expenditure by region or household 

income class to estimate the cost incidence of policies based on energy cost increases.  Since 

higher energy costs affect the cost of all goods and the policy has effects on returns to capital and 

resources and on wages, basing distributional effect purely on energy expenditure of different 

households can be misleading.  In fact, we find that the income effect on distribution is 

progressive and completely offsets the regressive effects seen from just focusing on energy 

expenditure patterns.  

Indeed when we focus just on the distributional impact of carbon pricing (ignoring the use of 

the revenue) we find that the progressive income side impacts more than outweigh the regressive 

spending side impacts.  In other words, carbon pricing is modestly progressive.  This stands in 

sharp contrast to earlier studies that have only focused on the spending side incidence.   

In a model with a single representative household, a neutral assumption is to return auction 

revenue in a lump sum manner to that household.  With multiple households there is no 

obviously neutral way to distribute allowances or revenue from auctioning them.  Giving 

allowances away for free benefits those who receive them or who own equity in firms that get 

the allowances.  Direct distribution of the money to households or use of the revenue to reduce 

other taxes all have different implications for costs borne by households of different income 

levels in different regions.  We find that an equal lump sum household payment leads to small 

net benefits for low income households—the lump sum payment more than offsets costs of the 

policy at these income levels.  Higher income households thus bear those costs.  This allocation 

scheme was by far the most progressive one we analyzed. 

While there have been a few proposals calling for an equal lump sum distribution of tax or 

allowance revenue from a GHG policy, most proposals have focused on more complex schemes 

to use this revenue.  One set of proposals popular among economists focus on using the revenue 

to reduce other tax rates on the basis that this will reduce the distortionary effects of taxes, and 

thereby lower the overall cost of the policy.  We examined using the revenue to reduce the 

payroll tax, the marginal personal income tax, and capital tax rates.  We find modest efficiency 

gains from such revenue recycling plans, but all are regressive leading to higher percentage costs 

for the lowest income households.  Not surprisingly the payroll tax reduction is least regressive.  

The relative modest efficiency gains from these appear to result from our revenue neutrality 

requirement.  That combined with formulation of marginal personal income taxes, allows only 

about one-half of the revenue to be recycled as the rest must be retained to cover reduction in tax 

revenue.  

Other proposals would give allowances away rather than cut taxes.  Often, as in the European 

Trading Scheme or in the U.S. sulfur trading program, these are allocated to firms that would be 

required to turn in allowances on the basis that they ―need‖ them.   However, the incidence of 

mitigation cost are generally passed on to consumers or resource owners and so distributing 
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allowances in this way leads to windfall gains for firms, and mostly benefits equity owners.  In 

H.R. 2454, recently passed by the House but awaiting action in the Senate, a significant share of 

allowances are distributed to local distribution companies (LDCs) whose rates are set through 

public utility commissions.  The presumption is that because rates are set to achieve a fair rate of 

return on capital, a lump sum allocation of allowances of significant value would not lead to a 

windfall gain for the firms, but rather that value would be returned to the ratepayer.  A concern 

with this approach, anticipated in H.R. 2454, is that it would result in lower electricity rates and 

this would undermine the efficiency of the cap and trade system by reducing the incentive for 

consumers to adopt electricity saving measures. We did not attempt to simulate H.R. 2454 

specifically, but we did structure a set of simulations that included a distribution of allowances 

―needed‖ by the LDCs to them.  We returned this revenue to ratepayers either as a lump sum 

proportional to electricity consumption or as a reduction in electricity rates paid by households.   

 Among the free distribution schemes we analyzed, distribution to capital owners as would be 

the result if firms were given allowances was the most regressive, actually leading to benefits to 

the highest income households at the expense of low income households.  Since lower income 

households spend a larger share of income on electricity (but derive a low share of income from 

capital returns) allocation of some of the allowances to LDCs would be expected to blunt the 

distributional effects.  We find this case produced among the most neutral (by income) 

distributional results of the scenarios we considered.   The simulation that reduced electricity 

rates did indeed undermine the efficiency of the policy, increasing costs for most households 

substantially compared to any other recycling policy.  Thus, the language in H.R. 2454 

instructing revenue to be returned to rate payers in a manner that passes through higher 

electricity rates is important for retaining the efficiency of the policy.  In that regard, it is crucial 

that rate payers correctly perceive the higher rates.  If a monthly bill is sent that includes an 

electricity charge at higher rates and reduces this by some amount of allowance value rebate, the 

consumer may very well just look at the bottom line bill, see not much increase, and not fully 

perceive that rates have gone up. We also note that with LDC distribution cases, public utility 

commissions could alter the distributional consequences through different formulae for 

distribution.  Rather than distributing based on electricity consumption, they might do an equal 

lump sum to all households, favor lower consumption households as a proxy for directing the 

value to lower income households, or consider other mechanisms to distribute or use these funds. 

Our distributional results for this case are only illustrative of one possible way in which such 

revenue may be distributed.  In reality, different PUCs in different regions of the country may 

pursue different strategies for using this allowance revenue with very different distributional 

implications.  

Regionally we find that California, the Pacific Coast, New England, and New York generally 

experience the lowest cost, and even benefit from the carbon pricing policy we examined while 

the South Central, Texas, and Mountain States face the highest cost.  Differences in costs among 

regions are driven by differences in CO2 intensity of electricity production, the presence of 

energy producing and energy intensive industry, and income levels. Those regions that benefit do 
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so not because abatement itself is beneficial.  Abatement costs may be lower in these regions, but 

the reason for benefits is that the distributional scheme favors them.  The regional results are 

relatively insensitive to the different revenue recycling approaches we explored however the 

lump sum approach leads to the least difference in cost among regions.  All the other approaches 

tend to benefit higher income regions relatively more, and increase the dispersion among 

regions. An important bottom line result is that the amount of revenue raised, even accounting 

for reduction in revenue from other taxes due to reduced economic activity, is large relative to 

costs borne by households.  As a result, the cost impact on any household is determined as much 

or more by how the allowances are distribution or auction revenue used than the direct cost of 

the policy itself. 

This initial exploration of distribution impacts was conducted using a static general 

equilibrium model of the U.S. economy.  In further work we hope to embed this model in a 

recursive dynamic structure to better capture investment dynamics and capital market distortions, 

and simulate more realistic scenarios as other future conditions change.  A recursive dynamic 

structure will also allow us to consider scenarios that more closely approach measures laid out in 

H.R. 2454 or other greenhouse gas legislation proposals. 
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APPENDIX A. MODEL STRUCTURE 

This section provides an algebraic description of the static USREP model and lays out the 

equilibrium conditions. Following Rutherford (1995b) and Mathiesen (1985), we formulate the 

equilibrium as a complementarity problem and use the GAMS/MPSGE software Rutherford 

(1999) and the PATH solver Dirkse and Ferris (1993) to solve for non-negative prices and 

quantities. Our complementarity-based solution approach distinguishes price and demand 

equations, market clearance conditions, budget constraints, and auxiliary equations. We use 

constant returns to scale elasticity of substitution (CES) and constant elasticity of transformation 

(CET) functions to describe production and transformation activities.  

A. Behavior of Firms 

 In each region (indexed by the subscript r) and for each sector (indexed interchangeably by i 

or j), a representative firm chooses a level of output y, quantities of capital and labor, resource 

factors (indexed by z) and intermediate inputs from other sectors j to maximize profits subject to 

the constraint of its production technology. By duality and the property of linear homogeneity, 

optimizing behavior of the representative firm requires that:   
),,,( ,,, zrjririr prpkplpacp                     (A1)  

where 
irp ,
, 

irpa ,
, rpl , pk  and zpr denote prices for domestic output, intermediate inputs, labor, 

capital, and resource factors, respectively. irc , provides a generic representation of the unit cost 

function for sector i. Figures A1 – Figure A5 provide a schematic overview of the adopted 

nesting CES structure for production sectors.  Zero profits conditions in (A1) exhibit 

complementary slackness with respect to the activity level yr,i. For each sector, ad-valorem 

sector- and region-specific output tax rates, denoted by 
irto ,
, enter at the at the top nest. Region-

specific capital income tax rates, denoted by rtk , and payroll tax rates, denoted by rtl , enter in 

the value-added nest.  

 To illustrate how taxes enter the CES cost functions, consider the pricing equation for the 

agricultural sector (Figure A2). We write the equations in calibrated share form (Rutherford 

(1995a) where ’s denote respective benchmark value share parameters and an upper bar refers 

to the benchmark value of variables. Unit cost function is given by:  
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where RESIrp , denotes the price for the resource-intensive input bundle and the price for the value-

added composite, VArp , , is given by:  
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Elasticities are denoted by σ. Tables A1-A2 provide a list of elasticity parameters used in the 

model.   

By Shephard's Lemma, the demand for good j by sector i is:                                                                                     
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and the demand for labor, capital, and resource factors is:   
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B. Domestic and Foreign Trade  

 We adopt the Armington (1969) assumption of product heterogeneity for imports and exports. 

Sectoral output produced in each region is converted through a CET function into goods destined 

for different markets. The associated unit cost function is given by: 
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where irpd , , irpdfx , , and irpdx , denote the price for domestic output, foreign exports, and intra-

national exports, respectively, and ’s are value shares parameters. As described in the main 

part of the paper, we use different market structures to model intra-U.S. trade for the following 

three subsets of goods: non-energy goods (indexed by ne) are traded on a bilateral basis, 

electricity (indexed by ele) is treated as a homogenous good within the six regional pools 

(indexed pool), and non-electricity energy goods (indexed by e) are traded on an integrated U.S. 

market. In accordance with this market structure we distinguish three prices for intra-national 

exports:  
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Nested CES functions characterize the trade-off between imported (from national and 

international sources) and locally produced varieties of the same goods. The zero profit 

conditions that determines the level of Armington production, denoted by ira , , is given by: 
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where 
irpdfm ,
 and ’s denotes the price for international imports and respective value share 

parameters, respectively.  

 The U.S. economy as a whole is modeled as a large open economy, i.e. we assume that world 

export demand and world import supply functions for each traded good are elastic implying that 

the U.S. can affect world market prices. Solving the model in the GAMS/MPSGE language 

(Rutherford, 1999) constrains us to employ constant returns to scale functions. To model 

concave world trade functions, for each region and sector we introduce a fixed factor which 

enters as an input into a Cobb-Douglas export and import transformation function. A foreign 

consumer is endowed with the rents from fixed factors and demands foreign exchange. Let 

irpfix ,
and 

irpfim ,
denote the price for the fixed factor associated with export and imports, 

respectively, and let pfxdenote the price for foreign exchange. The pricing equation for 

international exports of good i by region r is then given by:    
irir

irir pfixpdfxpfx ,, 1

,,
.                     (A10)  

Note that we can calibrate to any price elasticity of foreign demand for exports using the share 

parameter .
29

 If 1 , the U.S. cannot affect world prices, i.e. it is a small open economy. 

 Analogously, the pricing equation for imports from international sources is:  
irir

irir pfimpfxpdfm ,, 1
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            (A11) 

where 
irpdfm ,
and denote the price for international imports and a share parameter, 

respectively.  

C. Household Behavior  

 In each region, a representative agent in income class h  chooses consumption, residential and 

non-residential investment, and leisure to maximize utility subject to a budget constraint given 

by the level of income
hrM ,
. Income is defined as:  

 hrzhr
z zhrhrhrrhrhr TRFprRKpktincLplKpkM ,,,,,,,, )1)((        (A12) 

                                                 
29

 To see this, consider the primal function associated with (A10): 
1RXFX , where X and R denote the 

quantity of goods destined for the international markets and  the fixed factor, respectively. The elasticity of 

foreign exchange revenue with respect to the quantity exported is then given by 
dX

dFX

FX

X
. Foreign 

exchange revenue can be written as: XXpFX )(  , where )(Xp denotes the inverse world demand function 

for U.S. exports. From this it follows that 
dX

dp
Xp

dX

dFX
, and 

1
11

dX

dp

p

X

FX

X

dX

dFX
 , where 

denotes the inverse price elasticity of world demand for U.S. exports. Thus, we have
1

1 . In the small 

open economy case, world import demand is perfectly elastic implying and hence .1  
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where hrK , , hrL , , zhrF ,, , and hrRK , denote the initial endowment of non-residential capital, 

labor (including leisure time), fossil fuel resources, and residential capital, respectively. 
hrtinc ,

and hrTR ,  denotes the region- and household specific marginal personal income tax rate and 

transfer income, respectively.  

 Preferences are represented by a CES function, and Figure A6 provides a schematic overview 

of the adopted nesting structure for household utility. By duality and the property of linear 

homogeneity, optimizing behavior of households requires that:   
 ),,,( ,,, rrirhrhr pinvpkplpaEpw          (A13) 

where 
hrpw ,

denotes an utility price index. rpinv denotes the price for the investment good in 

region r which is produced with fixed production coefficients according to: 
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By Shephard's Lemma, the compensated final demand for good i by household h  in region r

is given by: 
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and leisure, residential and non-residential investment demand are given by: 
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D. Government  

The federal government agent demands regional government goods in fixed proportions: 
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r
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where r denotes benchmark value shares, and the regional government good is a CES aggregate 

of Armington goods whose price is given by:  
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and where ir , denote value shares parameters. The government budget constraint is given by: 
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BOP  denotes the initial balance of payments (deficit). 

E. Market Clearing Conditions 

 The system is closed with a set of market clearance equations that determine the equilibrium 

prices in the different goods and factor markets. The market clearance condition for Armington 

goods requires that: 
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By Shephard's Lemma, the two last summands in (A22) represent the investment and 

government demand for good i, respectively. Regional labor markets are in equilibrium if: 
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the integrated U.S. capital market clears if: 
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and equilibrium on resource markets requires that:  
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 Balanced intra-national trade for non-energy goods that are traded on a bilateral basis requires 

that: 
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balanced domestic trade for non-electricity energy goods requires that: 
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and regional electricity trade is in equilibrium if: 
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Foreign closure of the model is warranted through a national balance-of-payments (BOP) 

constraint which determines the price of foreign exchange: 
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where the level of foreign exports, 
irEX ,
, and foreign imports, 

irIM ,
, is determined by 

conditions (A10) and (A11).  

F. Extensions of the Model for Policy Analysis 

So far we have described the generic model without explicitly incorporating policy variables 

and other structural model features that are required for the policy analyses that we carry out in 

the paper. This section provides a description of how we implement GHG policies and certain 

model features specific to the scenarios laid out in the paper.  

Following the MIT EPPA model Paltsev et al. (2005b), we generally introduce greenhouse 

gas emissions into the nest structure of each production sector as a Leontief input associated with 

fuel reflecting the reality that abatement involves using less of the fuel. In most other cases, we 

introduce greenhouse gases into a top CES nest, and the elasticities of substitution are chosen to 

match bottom-up estimates of abatement possibilities Hyman (2001) and Hyman et al. (2003).  

 Note that we tax energy at the point of consumption, i.e., imported coal, oil, natural gas is 

subject to GHG taxes as well as domestically produced energy. We tax energy associated with a 

process of energy (i.e., refineries), so it does not matter where energy is consumed - domestically 

or abroad. Finally, note that we tax energy used in production of exported goods but do not tax 

energy used in production of imported goods.  

 In our policy scenarios that consider the auctioning of permits, we impose additional 

constraints that determine the endogenous level of the active recycling instruments such that (i) 

the share of government expenditure in GDP remains constant and (ii) such that uniform 

transfers per household or a uniform change in terms of percentage points of the active recycling 

instrument are achieved.  In the free allocation scenarios, we impose the constraint that the share 

of government expenditure in GDP is constant and we distribute the revenue (net of the portion 

needed to keep the share of government fixed) according to the scenario-specific allocation 

scheme.  

 In the ELE_SUB scenario we use the value of allowance going to the electricity sector, 

denoted by rAV , to subsidize the domestic electricity consumer price, denoted by rpsele . We 

implement this by adding the following pricing equation for the electricity consumer price: 
 

relerr subpapsele ,               (A28) 

where the endogenous region-specific subsidy rate, rsub , is determined such that:  

r

h

elehrr AVdsub ,,  .            (A29) 

APPENDIX B. DATA SOURCES 

 The USREP model is built on state-level economic data from the IMPLAN dataset 

(Minnesota IMPLAN Group, 2008)  covering all transactions among businesses, households, and 
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government agents for the base year 2006.  Aggregation and reconciliation of IMPLAN state-

level economic accounts to generate a benchmark dataset which can be used for model 

calibration is accomplished using ancillary tools documented in Rausch and Rutherford (2009). 

The detailed representation of existing taxes captures the effects of tax-base erosion, and 

comprises sector- and region-specific ad-valorem output taxes, payroll taxes and capital income 

taxes. IMPLAN data has been augmented by incorporating regional tax data from the NBER tax 

simulator to represent marginal personal income tax rate by region and income class. The 

USREP model is built on energy data from the DOE EIA State Energy Data System (Energy 

Information Administration, 2009)  comprising price and quantity data on energy production, 

consumption and trade. For each state, we have replaced all energy data in the economic 

IMPLAN dataset with assembled price-quantity EIA data and used optimization techniques to 

reconcile economic and energy data. The integrated dataset is micro-consistent, i.e. it describes a 

reference equilibrium, and is benchmarked to EIA energy statistics.  

 Additional data for the greenhouse gas (CO2, CH4, N2O, HFCs, PFCs and SF6) emissions is 

based on the EPA inventory data, including endogenous costing of the abatement of non-CO2 

GHGs (Hyman et al. (2003)). Following the approach outlined in Paltsev et al. (2005b), the 

model incorporates supplemental physical accounts to link economic data in value terms with 

physical quantities on energy production, consumption and trade. Furthermore, the USREP 

model incorporates demographic data on the population and number of households in each 

region and income class based on U.S. Census Data (U.S. Census Bureau, 2006).  

APPENDIX C. MODEL CALIBRATION 

 As customary in applied general equilibrium analysis, we use prices and quantities of the 

integrated economic-energy dataset for the benchmark year 2006 to calibrate the value share and 

level parameters in model. Exogenous elasticities determine the free parameters of the functional 

forms that capture production technologies and consumer preferences. Tables A1-A2 provide a 

list of the elasticity parameters used in the model and the respective values employed in the core 

scenarios. Whenever possible, we adopt the parameterization of the single U.S. region in the 

EPPA model (version 4, Paltsev et al., 2005) for all U.S. regions which has been subject to 

extensive sensitivity analysis in Webster et al. (2002) and Cossa (2004).  There are, however, a 

few elasticity parameters that are specific to the USREP model. 

 In order to parameterize capital and labor we follow the approach outlined in Babiker et al. 

(2001) to infer values for elasticities of substitution from data on related supply elasticities and 

benchmark shares. Based on Paltsev et al. (2005b) we assume that the share of leisure time 

relative to hours worked is 0.25. The elasticity of substitution between leisure and consumption 

is then calibrated to match an aggregate labor supply elasticity of 0.25 based on Babiker et al. 

(2004). We assume an uniform labor supply elasticity across regions and income groups. In a 

similar way we calibrate a uniform elasticity of substitution between residential and other 

investment to match an aggregate capital supply elasticity of 0.3, based on Chirinko et al. (2004). 

The elasticity of transformation between outputs destined for domestic and international markets 
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is set to 2.0 for all goods. We assume a uniform price elasticity for world export demand and 

world import supply for all goods and regions, i.e. irir ,, .  
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Table A1. Reference Values of Production Sector Substitution Elasticities 

Symbol Description Value Comments 

Energy Substitution Elasticities 

σEVA Energy-Value Added 0.4 -

0.5 

Applies in most sectors, 0.5 in EINT, 

OTHR 

σENOE Electricity-Fuels 

aggregate 

0.5 All sectors 

σEN Among fuels 1.0 All sectors except ELEC 

σEVRA Energy/Materials/Land-

Value Added 

0.7 Applies only to AGRI 

σER Energy/Materials-Land 0.6 Applies only to AGRI 

σAE Energy-Materials 0.3 Applies only to AGRI 

σCO Coal-Oil 0.3 Applies only to ELEC 

σCOG Coal/Oil-Gas 1.0 Applies only to ELEC 

Other Production Elasticities 

σVA Labor-Capital 1.0 All sectors  

σGR Resource-All other inputs 0.6  Applies to OIL, COAL, GAS sectors, 

calibrated to match medium run 

supply elasticity 

σNGR Nuclear Resource-Value 

added 

0.04-

0.09 

Varies by region, calibrated to match 

medium run supply elasticity 

σHGR Hydro Resource-Value 

added 

0.2-

0.6 

Varies by region, calibrated to match 

medium run supply elasticity 

Armington Trade Elasticities 

σDM Domestic-Aggregated 

Imports 

2.0-

3.0 

0.3 

Varies by good 

Electricity 

σMM National Imports-Intern. 

Imports  

5.0 

4.0 

6.0 

0.5 

Non-Energy goods 

Gas, Coal 

ROIL 

Electricity 

 Output produced for 

domestic, national, and 

foreign markets 

2.0 Elasticity of transformation, uniform 

for all goods 
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,   Share parameters in 

world trade functions  

0.01 Used to calibrate price elasticity of 

world export demand and word 

import supply. 

σGOV CES aggregator for 

government production 

1.0  

 

 

Table A2.  Reference Values for Final Demand Elasticities  

Final Demand  Elasticities for Energy  

σEC Energy-Other 

Consumption 

0.25  

σEF Among Fuels and 

Electricity 

0.4  

Other Final Demand Elasticities 

σCS Consumption-Savings 0.0  

σCL Consumption/Savings-

Leisure 

1 Calibrated to match labor supply 

elasticity of 0.25 

σSK Resident. Inv.-Other 

Investment 

1 Calibrated to match capital supply 

elasticity of 0.3 

σC Among Non-Energy goods 0.25-

0.65 

 

σCT Transportation—Other 

Consumption 

1.0  
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Figure A1. Services, Transportation, Energy Intensive and Other Industries    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Vertical lines in the input nest signify a Leontief or fixed coefficient production structure 

where the elasticity of substitution is zero. Terminal nests with … indicate the same aggregation 

structure for domestic and imported goods as shown in detail for the EINT sector. Goods that 

are traded intra-nationally are modeled as homogeneous goods.  The following figures provide 

greater detail over the production structure for sub-sectors of the economy. 
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Figure A2. Agriculture 
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Figure A3. Electricity 
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Figure A4. Primary Energy Sectors (Coal, Crude Oil, Natural Gas) 
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Figure A5. The Refined Oil Sector 
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Figure A6. Household Sector 
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