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Two different approaches are described for constraining climate predictions based on
observations of past climate change. The first uses large ensembles of simulations from
computationally efficient models and the second uses small ensembles from state-of-the-art
coupled ocean–atmosphere general circulation models. Each approach is described and the
advantages of each are discussed. When compared, the two approaches are shown to give
consistent ranges for future temperature changes. The consistency of these results, when
obtained using independent techniques, demonstrates that past observed climate changes
provide robust constraints onprobable future climate changes. Suchprobabilistic predictions
are useful for communities seeking to adapt to future change as well as providing important
information for devising strategies for mitigating climate change.
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1. Introduction

Traditionally, the information obtained from a climate model about future climate
change has been presented as a projection, without any information about the
likelihood of such a projection (e.g. Cubasch et al. 2001). However, adaptation to
the consequences of climate change requires estimates of risks, and therefore of the
likelihoods of different impacts. Likewise, devising mitigation strategies requires an
understanding of the risks contingent on a chosen emissions path, with particular
recent attention being given to the issue of avoiding dangerous climate change and
minimizing the risk of reaching thresholds that could lead to irreversible climate
changes (e.g. Schellnhuber et al. 2006). Consequently, there is an increasingly
urgent requirement to provide probabilistic predictions of future climate for a wide
variety of different users and applications.

Uncertainty in model predictions of future climate change arises from
three main sources. First, future emissions of greenhouse gases (GHGs) and
changes in other anthropogenic and natural factors that can affect climate
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are uncertain. The second source of uncertainty results from natural internal
variability, which can be partially estimated by running climate models many
times from different initial conditions. The third source arises from modelling
uncertainty in estimating the response of the climate system to a particular
emission scenario.

The main focus here is on combining models and observations to provide
constraints on probable future climate change and thereby quantify the second
and third sources of uncertainty arising from modelling uncertainty. (There will
be some brief discussion of a methodology for generating uncertainties in future
emission scenarios and that has been incorporated in one approach described
below, while other approaches assume a particular emission scenario and
calculate probable future climate change contingent on that emissions pathway.)
The common approach in all the work described here is that past climate change
has been used to constrain future climate change. An alternative approach is
simply to use ensembles of models to provide ranges of probable future climate
without reference to observations (e.g. as was done in the third assessment
report (TAR) of the IPCC to provide the range of future warming of 1.4–5.88C;
Cubasch et al. 2001). This has the drawback that unweighted ensembles of
models, for example, from ‘ensembles of opportunity’ such as for the TAR, have
no basis for assigning likelihoods and will not necessarily span the range of
uncertainty (Allen & Ingram 2002). Much recent interest has been devoted to
combining large perturbed physics ensembles of simulations with observational
constraints based on current climate and variability, such as the model’s
representation of the seasonal cycle and other climate variables (Murphy et al.
2004; Stainforth et al. 2005; Knutti et al. 2006). In contrast, here we use past
climate change (rather than the equilibrium state of current climate) to
constrain future climate change. By quantifying the effects of past forcings, to
the extent they are known, on past climate change, we aim to exploit
information on the timescales and processes that are most relevant for future
climate change.

The focus of §2 of this review paper is on using the observational record to
provide probabilistic predictions of future global mean temperature change and
to constrain basic properties of the climate system such as the climate sensitivity,
rate of ocean heat uptake and the total aerosol forcing. Much progress has been
made since the TAR in moving on from purely model-based projections to
probabilistic assessments constrained by observations. Clearly, however, there is
a requirement for information at regional as well as global scales, and for
probabilistic predictions of variables other than temperature or mean values (e.g.
variability or extremes). These are discussed in §3.
2. Constraints on future climate change based on past climate change

Within the framework of using past climate changes to constrain climate system
properties and predictions of future climate change, two main approaches are
discussed in this paper.

The first approach is to make large ensembles of model simulations and
compare the fit between past observed changes and modelled changes. Those
simulations that have better fits will be given higher likelihoods than those with
Phil. Trans. R. Soc. A (2007)
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worse fits, and probability distributions of climate system properties (including
the climate sensitivity, the rate of deep-ocean heat uptake and the net aerosol
forcing) can then be derived based on the likelihood statistics.

This approach requires the computing capability to make many climate model
simulations. Therefore, most studies have employed computationally efficient
climate models such as an energy balance model (EBM) or an Earth system
model of intermediate complexity (EMIC), although state-of-the-art (SOTA)
coupled atmosphere–ocean general circulation models (AOGCMs) can be used,
given very large computing resources, such as distributed computing projects as
in ClimatePrediction.net (Stainforth et al. 2005). The EBMs only require closure
of the energy balance equation and neglect the balances (i.e. conservation laws)
of other physical components in the climate system (e.g. mass, moisture,
chemical constituents, momentum or angular momentum) that are included in
higher complexity models. The EMICs also simplify the complexities of processes
included in SOTA coupled AOGCMs, but aim to include the most relevant
climate processes with the focus on the fidelity of the most important feedbacks
between the components. The resulting models take a comprehensive approach
to the Earth system rather than representing individual components with
varying levels of complexity. As computing resources increase, these models will
then increase their complexity equally across components. Like all climate
models, EMICs are subject to uncertainties in modelling climate processes and
feedbacks, uncertainties that derive from imperfect understanding and the
approximations required in representing processes taking place on smaller spatial
or temporal scales than the model’s resolution. In addition, the need for SOTA
models still remains debated as the predicted variables are transformed from
global to regional scales and from decadal to shorter timescales.

The second approach is to use much smaller ensembles of simulations of past
climate change by SOTAclimatemodels in order to deduce probable future changes.
SOTA climate models include a much wider range of processes than EBMs and
EMICs and are able to resolve large-scale (regional) weather phenomena on regional
scales. The likelihoods of future changes are estimated by scaling the response to
historical climate forcings as simulated by a model and using the scaling factors to
adjust the future predictions by the same model. The basic assumption is that if a
climate model overestimates the response to past climate forcings as compared with
observed climate changes, then it will also overestimate the response to future
forcings provided the forcings remain similar. This further implies that a linear
relation can be estimated between observed and modelled past climate change, and
that the fractional errors from the historical period will apply to future scenarios.
Such a method, which is based on optimal detection analyses, can be used to deduce
theobserved temperaturechangesattributable todifferent forcing factors. It hasbeen
dubbed the ASK method and was first described by Allen et al. (2000).
(a ) Large-ensemble approach to assessing uncertainty

With current computational resources, EMICs are the tools that have been
most commonly used for estimating large ensembles of future climate simulations
including a range of different forcings and climate model properties. Two projects
have approached the problem in two distinct manners.
Phil. Trans. R. Soc. A (2007)
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The first project (Knutti et al. 2002) performed a direct Monte Carlo
simulation in which a small set of parameters is perturbed, an historical
simulation is calculated and these results are compared with observed surface
and ocean temperature changes. If the simulation is not inconsistent with the
observations, a simulation of future climate is calculated and joins the growing
ensemble. This technique requires a highly efficient model (the model used,
BERN2D, takes order minutes per 100 years of simulation time). We note that
only single future emission scenarios can be considered in this fashion because
only the climate system uncertainty is included in the analysis. Additional
scenarios require additional Monte Carlo simulations with the entire system.

The second project (Webster et al. 2003) approached the task differently for
two reasons. First, the model used (the MIT integrated global system model,
MIT IGSM; Prinn et al. 1999) has higher complexity and requires more
computational resources (requiring approx. 24 h for a 100-year simulation).
Second, the method includes uncertainty in future climate forcings by using
probabilistic emission scenarios (Webster et al. 2002).1

Since uncertainties in future emission scenarios are also considered, an
estimate of total uncertainty in future climate change is generated without
dependence on specific forcing scenarios. Uncertainties relating to future climate
forcings are considered resulting from anthropogenic emissions of GHGs (carbon
dioxide, CO2; methane, CH4; nitrous oxide, N2O; hydrofluorocarbons, HFCs;
perfluorocarbons, PFCs; sulphur hexafluoride, SF6) and anthropogenic emissions
of short-lived climate-relevant air pollutants (sulphur dioxide, SO2; nitrogen
oxides, NOx ; carbon monoxide, CO; ammonia, NH3; black carbon, BC; organic
carbon, OC; non-methane volatile organic compounds, NMVOCs). Using the
MIT emissions prediction and policy analysis model (Babiker et al. 2001; Paltsev
et al. 2006), uncertainties are estimated for anthropogenic emissions (Webster
et al. 2002) of all relevant GHGs as well as aerosol and GHG precursors.

By including uncertainties in future emissions, this approach is able to provide
the total likelihood of future climate change, which is of direct relevance to policy
makers, especially if comparisons can be made between future predictions of
future climate change that include emission mitigation measures and predictions
of future climate change that do not include mitigation measures. The alternative
approach (as followed by the large-ensemble (LE) approach of Knutti et al.
(2002) and by the ASK small-ensemble approach described in §2b) is to estimate
the uncertainty in the climate response under a single projection of emissions.
This enables useful comparisons to be made between the consequences of
different possible emissions pathways.

The century time-scale response of the climate system to changes in the
radiative forcing is primarily controlled by two uncertain global properties of the
climate system: the climate sensitivity and the rate of oceanic heat uptake
1 The critical input data for uncertainty analyses are the probability density functions (PDFs) for
the uncertain parameters and when possible, these should be based on objective analyses. A key
error frequently made in assembling such PDFs is to use the distribution of point estimates drawn
from the literature rather than from estimates of uncertainty (e.g. standard deviation). There is
nothing inherently wrong with using literature estimates, but the point estimates of uncertain
parameters should span the population of interest and not simply be derived from a distribution of
mean estimates from different studies (see Webster et al. (2003) for further discussion).

Phil. Trans. R. Soc. A (2007)
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(Sokolov & Stone 1998; Sokolov et al. 2003).2 In coupled AOGCMs, these are
emergent properties which depend on the model equations and parameters of the
model. The sensitivity,S, of theMIT climatemodel, however, can be easily varied by
changing the strength of the cloud feedback. (We note that this mimics structural
differences in theAOGCMs and also that S can be varied in all EMICs, although it is
often directly changed by the total feedback parameter rather than the cloud
feedback alone.) Mixing of heat into the deep ocean is parameterized in the MIT
model by an effective diffusion applied to a temperature difference from values in a
present-day climate simulation. Therefore, the rate of the oceanic heat uptake is
defined by the value of the globally averaged vertical diffusion coefficient, Kv, for
diffusion of temperature anomalies below the mixed layer.3 (NB: the rate of ocean
heat uptake is proportional to

ffiffiffiffiffiffi
Kv

p
as discussed in Sokolov et al. 2003.) By varying

these two parameters, the MIT climate model can reproduce the global-scale zonal-
mean responses of different AOGCMs (Sokolov & Stone 1998; Sokolov et al. 2003).
Significant uncertainty also exists in the historical forcing mainly associated with
uncertainty in the radiative forcing in response to a given aerosol loading,Faer. Thus,
in the MIT IGSM, these three parameters (S,Kv and Faer) characterize uncertainty
both in the response of the climate system and in the historical climate forcing.
Uncertainties in these basic climate system properties that govern the transient
response of the climate system are estimated from constraints provided by recent
observations of climate change (Forest et al. 2002, 2006).

Together, these uncertainty ranges for future forcing and for the basic climate
system properties provide the input distributions that are used for the Earth system
components of theMIT IGSM(Prinn et al. 1999;Reilly et al. 2001).To generate large
ensembles of future climate simulations, each of these sources requires input
probability distributions for the relevant parameters in the model components.

One crucial aspect of the Webster et al. (2003) work is using the joint probability
density functions (PDFs) for the climatemodel parameters controllingS,Kv andFaer

from Forest et al. (2002). The estimation method uses observations of upper air,
surface and deep-ocean temperatures for the twentieth century to jointly constrain
these climate parameters (qZ(S, Kv, Faer)), while including unforced climate
variability as a source of uncertainty (Forest et al. 2002). The method for esti-
mating PDFs relies on estimating goodness-of-fit statistics, r2 (Forest et al. 2000,
2001), obtained fromanoptimal fingerprint detection algorithm(Allen&Tett 1999).
We compute r2 by taking the difference in the modelled and observed patterns of
climate change,T(q),Tobs andweighting the difference by the inverse of the unforced
variability for the pattern, CK1

N :

r2ðq;TobsÞZ ðTðqÞKTobsÞ0CK1
N ðTðqÞKTobsÞ: ð2:1Þ
2Climate sensitivity, S, is defined as the equilibrium surface temperature change in response to
doubling the CO2 concentration. One alternative to this definition is the effective climate
sensitivity which is defined in Murphy (1995) as the climate sensitivity that satisfies the transient
energy balance equation at the time of CO2 doubling. In most AOGCMs, the equilibrium and
effective climate sensitivities are very similar, although significant differences can exist (Houghton
et al. 2001).
3 Each EMIC has its own method to vary the rate of oceanic heat uptake and the inter-comparison
of this quantify can only be done via comparison of the transient response to forcings in each
model. Thus, the effective Kv is unique to the MIT model and cannot be compared directly with
diffusion in other climate models.
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Differences in r2 provide a statistic for hypothesis testing, and thereby provide
probability estimates for parameter combinations (Forest et al. 2000, 2001)

Dr2 Z r2ðqÞKr 2minwmFm;n; ð2:2Þ
with r 2min being the minimum r2 value in the q-parameter space for an individual
diagnostic. Thus, Dr2 follows an F distribution withm and n degrees of freedom and
can be used to estimate a likelihood function over the q-parameter space. The
likelihood, pðDTijq;CN Þ, from individual diagnostics for surface, upper air and deep-
ocean temperature changes can then be combined via the Bayes theorem (1763) to
estimate the posterior, pðqjDT ;CN Þ. This method requires an estimate of the
unforced variability (aka natural) for the climate system,CN, over very long periods.
Ideally, observed climate variability would be used but reconstructed data are not of
sufficient accuracy. Our estimate was obtained from long control runs of particular
AOGCMs (Forest et al. 2002). Estimates of the variability from other AOGCMs
could potentially change the results although tests of this sort are foundnot to change
the results qualitatively.

In Webster et al. (2003), expert priors for both S and Kv were used from
Webster & Sokolov (2000). The latest PDF estimates calculated from Forest
et al. (2006) are shown in figure 1. The three diagnostics are treated as
independent observations and, therefore, weighted equally in the Bayesian
updating procedure. The result is a joint PDF for these three parameters that
contains correlation among the marginal PDFs (e.g. a high climate sensitivity is
only consistent with observed temperature under some combination of rapid heat
uptake by the ocean and a strong aerosol cooling effect). Forest et al. (2006)
concluded from figure 1 that most AOGCMs are mixing heat into the deep ocean
too efficiently. The implications of this for models’ estimates of the transient
climate response (TCR) are discussed further in §2b.

From these distributions of the basic climate system properties, an efficient
Monte Carlo sample is generated using the Latin-Hypercube sampling algorithm
(Iman & Helton 1988).4 This is shown in figure 2. Given both PDFs for
emission scenarios and pðqjDT ;CN Þ, a LHS can be generated and an ensemble of
future climate change simulations is calculated. A sample size of 250 is sufficient
to estimate probability distributions for climate outcomes of interest. Further
details can be found in Webster et al. (2003).

The Webster et al. (2003) results are shown in figure 3 for two 250-member
ensembles: the ‘policy’ and ‘no policy’ cases. The policy case assumes Kyoto
Protocol caps for those countries agreeing to them with additional 5%
reductions in emissions below these caps every 15 years. For the remaining
countries, they adhere to caps beginning in 2025 at 5% below their 2010
4 To reduce the computational requirements for a Monte Carlo simulation, sampling from the
probability distributions for the uncertainty analysis is performed using Latin-Hypercube sampling
(LHS; Iman & Helton 1988). LHS divides each parameter distribution into n segments of equal
probability, where n is the number of samples to be generated. Sampling without replacement is
performed, so that with n samples, every segment is used once. Samples for the climate parameters
are generated from the marginal PDFs, and the correlation structure among the three climate
model parameters is imposed (Iman & Conover 1982). This ensures that the low probability
combinations of parameters are not overrepresented, as would be the case if the correlations were
neglected.
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Figure 1. The marginal posterior PDF for GSOLSV results with uniform priors for the S–Kv

parameter space. The light to dark shading denotes rejection regions for the 10 and 1% significance
levels, respectively. The 10 and 1% boundaries for the posterior with expert prior on S are shown
by thick black contours. The positions of AOGCMs represent the parameter values required in the
MIT two-dimensional model to match the transient response in surface temperature and thermal
expansion component of sea-level rise (following the method in Sokolov et al. (2003)). Lower Kv

values imply less deep-ocean heat uptake and hence a smaller effective heat capacity of the ocean.
Adapted from Forest et al. (2006).
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emission levels and also reduce an additional 5% below these every 15 years.
These targets achieve approximate stabilization at 550 ppm for CO2

concentrations in 2100 (figure 4; additional details in Webster et al. (2003)).
We stress that the no policy ensemble includes uncertainty in both the forcing
and the response of the climate system, and thus provides an estimate of total
uncertainty for assessing future impacts of climate change policies. Probable
rates of temperature and sea-level increase are accordingly greater for the no
policy case than the policy case, especially towards the upper tails of the
probability distributions.

In addition, in figure 5, we estimate the uncertainty for the response to the
SRES A1B scenario using a LH sample from the Forest et al. (2006) results.
With the forcing scenario fixed, the probability for temperature changes can
be compared with results later in this paper. As expected, the uncertainty
ranges are smaller than the total uncertainty previously discussed. The future
temperature rise is estimated to be 2.3–4.2 K in 2100 (5–95 percentile) relative
to 2000.
Phil. Trans. R. Soc. A (2007)
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Latin-Hypercube sampling. Adapted from Forest et al. (2006).
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(b ) Small ensembles of coupled ocean–atmosphere climate models

To complement the LE approach, a similar method to estimate uncertainty in
climate predictions makes use of the small ensembles available from SOTA
climate models. This has been dubbed the ASK method (Allen et al. 2000). The
basic idea behind the ASK method is that knowledge of how the observational
record constrains the probable contributions of GHGs and other forcing factors
to past temperature change in turn provides observational constraints on
probable future rates of warming. This is achieved by assuming that there is a
linear relationship between fractional errors in simulating past climate change
and in predicting future climate change. The robustness of such a relationship
has been investigated in detail by Kettleborough et al. (2007) (see below).
An important advantage of such an approach is that predictions are STAID
(i.e. provide STAble Inferences from Data; Allen et al. (2006a)). STAID
Phil. Trans. R. Soc. A (2007)



∆Tsfc (2000–2100)

2 4 6
temperature change (K)

0

50

100

150

200

250

fr
eq

ue
nc

y 
(n

o.
 o

f 
ru

ns
)

∆sea level (2000–2100): TE + GM

0.2 0.4 0.6 0.8 1.0
sea-level change (m)

0

50

100

150

200

250

fr
eq

ue
nc

y 
(n

o.
 o

f 
ru

ns
)

Figure 3. Probability distributions, shown as cumulative density functions (CDFs), of near-surface
temperature change (DTsfc) and sea-level rise (both thermal expansion and glacier melt) for policy
(thin lines) and no policy (thick lines) ensembles.
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estimates depend largely on observations and are relatively robust to changes
in models. For example, introducing a new model into the analysis that has a
lower sensitivity than other models has only a second-order effect on the result
(Stott et al. 2006b). At the same time, uncertainty is reduced in a predictable
way as the signal strengthens (Stott & Kettleborough 2002). For a STAID
forecast, there should be a transfer function that links a forecast quantity to an
observable quantity. In the case of the ASK method, the transfer function is a
linear relationship linking past warming to future warming.

The first component of theASKprocedure is to estimate the factors bywhich the
model’s response to different forcings can be scaled up or down while remaining
consistent with the observed record. These scaling factors are determined from an
optimal detection analysis of observed and coupledmodel’s patterns of temperature
change. An optimal detection analysis is a form of linear regression (Allen & Tett
1999) which seeks to explain the observed pattern of change in terms of the
Phil. Trans. R. Soc. A (2007)
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for policy (thin lines) and no policy (thick lines). Adapted from Webster et al. (2003).
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contributions from different climate forcing agents, such as changes in well mixed
GHGs or fluctuations in solar output. Such optimal detection analyses have been
used extensively to determine the causes of observed changes in temperature and
other climate variables such as changes in precipitation and sea-level pressure.
They provided important evidence that led the fourth assessment report of the
IPCC to conclude that ‘most of the observed increase in global average
temperatures since the mid-twentieth century is very likely due to the observed
increase in anthropogenic GHG concentrations’ (IPCC 2007).

In an optimal detection analysis, observed temperature changes are expressed as a
linear combination of model responses to specified forcings. A typical approach
described here, and many of the ASK studies (Stott & Kettleborough 2002;
Phil. Trans. R. Soc. A (2007)
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Stott et al. 2006a,b; Kettleborough et al. 2007) is to partition the observed changes
into contributions from the response to well-mixed GHGs, the combined effects
of all anthropogenic forcings (ANTHRO) and the combined effects of all natural
forcings (NAT). Anthropogenic forcings typically included in climate models are
the effects of sulphate aerosols (both their direct effect through increased
reflection of incoming solar radiation, and in some model simulations through
their indirect effects by making clouds brighter or longer lasting) and the effects
of tropospheric and stratospheric ozone changes. These are spatially hetero-
geneous forcings and should have a different response pattern as compared with
that from the well-mixed GHGs. Natural forcings often included in climate model
simulations are changes in solar irradiance and stratospheric aerosols resulting
from explosive volcanic eruptions. The pattern of response to a particular forcing
is usually obtained from a multi-member initial condition ensemble, in which
several simulations (typically three or four) of the climate model are made with
an identical forcing combination but starting from different initial conditions
taken from a long multi-century control run of the model. Averaging the
responses from a multi-member initial condition ensemble reduces the noise
contamination of the climate change signal because ensemble averaging filters
out internal variability while keeping the common response to external forcings
that is seen in all initial condition ensemble members.

Observational and model data are normally filtered first to retain the large
spatial and temporal scales on which the signal of climate change is expected to
be detected above the noise of unforced internal variability (Stott & Tett 1998).
In the following example, observed decadal-mean near-surface temperature
changes over the 1900–2000 period, y, are expressed as a linear sum of simulated
changes from: GHG, x1; ANTHRO, x 2; NAT, x 3; plus noise, y0

y Z
X3

iZ1

ðxiKyiÞbi Cy0; ð2:3Þ
Phil. Trans. R. Soc. A (2007)
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where bi is the vector of unknown scaling factors to be estimated in the regression.
If bi is less than 1, this implies that the model overestimates the response to a
particular forcing and so has to be scaled down, and if bi is greater than 1, the
model underestimates the response and has to be scaled up. Including the
additional noise term yi in the regression equation, Allen & Stott (2003) take into
account the statistical uncertainty introduced by taking the model-simulated
responses from the mean of a finite ensemble which differs from the underlying
noise-free response that would be obtained from a hypothetical infinite ensemble.

The regression analysis is carried out in the reduced space spanned by the
leading p empirical orthogonal functions of the covariance matrix of internal
variability, CN1

, which is obtained from the model-based estimates of internal
variability (e.g. from long control simulations). To avoid bias in the estimate of
the covariance of the scaling factors, bi (Hegerl et al. 1996, 1997), a second
statistically independent estimate of the covariance matrix is used to determine
the uncertainty in the scaling factors (e.g. from an independent segment of the
control simulation). Model-based estimates of internal variability are used
because the instrumental record is too short to provide a reliable estimate of
internal variability and is also affected by external forcing. Two methods
of validation of model-based estimates of internal variability are made. As part of
the optimal detection procedure, a consistency test (Allen & Tett 1999) is used to
test whether the residuals of regression are consistent with internal variability. In
addition, a further check is provided by comparing power spectra of models and
data. Since the observational data contain forced as well as unforced variability,
to compare directly with model-based estimates of internal variability, an
estimate of the forced changes in the observational record is made, either by
detrending the data in some way or by subtracting an independent model-based
estimate of the externally forced response (Allen et al. 2006b). These tests
indicate that for global mean and continental-scale near-surface temperatures,
the estimated model variance is consistent with the observed variance although
we have very limited observational data for such tests on the 50–100 year
timescales of interest.

Having determined the distribution of scaling factors, bi , the next step is to
apply these same scaling factors to climate model simulations of future
temperature change on the assumption that a model which over- or under-
estimates past temperature change will similarly over- or underestimate future
temperature change. In the case of equation (2.1), where scaling factors for GHG,
ANTHRO and NAT are calculated, the future modified forecast, y for is given by

yfor Z
X2

iZ1

ðxfor
i Kyfori Þbi Cyfor0 ; ð2:4Þ

where xfor
i is the model forecast response and bi are the scaling factors for GHG

and ANTHRO calculated in equation (2.3). The assumption being made here is
that it is not possible to forecast deterministically future naturally forced
changes (due to changes in output from the Sun and from explosive volcanic
eruptions) and therefore the anthropogenically forced component is predicted
according to a particular scenario of emissions. The noise term yfori represents the
uncertainty in the model response pattern due to the modelled response pattern
of future temperature change being based on small ensembles and therefore
contaminated by internal variability. The additional noise term, yfor0 represents
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departures of the future climate from a scaled version of the modelled forced
response due to internal variability. Given knowledge of the probability
distribution of bi , obtained from equation (2.3), the uncertainty in future
temperature change can be calculated from equation (2.4) by estimating the
statistics of yfori and yfor0 by Monte Carlo sampling of the distributions.

Using the same scaling factors for past and future temperature changes is
equivalent to saying that the fractional error in the model’s simulation of
temperature change stays constant over time, a supposition that is supported by
the evolution of global mean temperatures in GCMs that tend to evolve similarly
over time in response to a given forcing despite differences in sensitivity and thus
response to amplitude. Analysis of an intermediate complexity model (Forest
et al. 2000), which includes similar nonlinear feedbacks as atmospheric GCMs,
also supports a linear relationship. A further investigation of the robustness of
the transfer function between past attributable temperature changes and future
warming was carried out by Kettleborough et al. (2007) for a range of emissions
scenarios using an EBM to sample the uncertainties introduced. Although an
EBM is limited by a lack of nonlinear feedbacks, the transfer function was found
to be sufficiently robust over a number of realistic forcing scenarios to introduce
only small additional uncertainty. (Note that an EBM was used to test the
linearity of the transfer function between past and future global mean
temperature changes, whereas a fully coupled SOTA climate model was used
to determine the probable spatial and temporal patterns of temperature change
attributable to anthropogenic and natural forcings.) For the A1FI scenario, at
2100, they found an error of between K10 and C10% and, for the B1 scenario
(which stabilizes to some extent), an error of between K30 and C20% was found
depending on the climate sensitivity and ocean heat diffusivity of the model. The
ASK method is best suited for casting forward uncertainties in future climate
changes over the next few decades when forcings are likely to continue increasing
linearly but is less well suited for scenarios with considerable stabilization. For
these, the approach of running very large ensembles of models such as EMICs is
better suited (§2b).

The first application of the ASK approach was by Allen et al. (2000), who
calculated uncertainties in twenty-first century warming rates under the IS92A
scenario scaling GHG and aerosol patterns deduced from the HadCM2 model
separately (as in equations (2.1) and (2.2)). They also calculated future warming
rates for a range of other coupled climate models using scaling factors on
ANTHRO only (rather than both GHG and ANTHRO as in equations (2.3) and
(2.4)), thereby assuming that the combined response to GHGs and aerosols could
be represented by a single spatio-temporal pattern. They found a range of
temperatures of 1–2.5 K warmer than in pre-industrial times in the decade 2036–
2046 and that the range was relatively robust to errors in a model’s climate
sensitivity, rate of ocean heat uptake or global response to sulphate aerosols as
long as these errors are persistent over time. Since across the range of models
they assumed that the relative roles of GHGs and aerosols remain constant in the
future, substantial changes in the balance of greenhouse warming and aerosol
cooling would increase the uncertainty in their results.

Allen et al. (2000) demonstrated that the spread of observationally
constrained predictions of future temperature estimated from different models
is smaller than the spread of predictions from the raw unscaled models, thus
Phil. Trans. R. Soc. A (2007)
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Figure 6. PDFs of temperature change. Shown are PDFs for four SRES scenarios (A1FI, A2, B1
and B2) for 2020–2030, 2050–2060 and 2090–2100 decades relative to 1990–2000 decade, calculated
by constraining HadCM3 simulations to the observed temperature change over the 1900–1999
period. The PDFs at the far right are for the 2090–2100 decade calculated by constraining
HadCM3 simulations to be consistent with the observed temperature change over the 1920–2019
period where the observations are assumed to follow a B2 scenario prediction after 1999. Adapted
from Stott & Kettleborough (2002).
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demonstrating the STAID nature of these forecasts. While this approach is
conservative, since only one of a large number of possible observational
constraints has been used to constrain the forecasts, it should also evolve in a
more predictable way, since it is not likely to be affected to first order by
introducing new models into the analysis. This could be an advantage for
discussions with policy makers in providing a robust, if potentially sub-optimal,
estimate of uncertainty (see discussion in Stott et al. (2006a)), and is in contrast
to estimates of uncertainty based solely on ensembles of model simulations which
will not necessarily span the range of uncertainty, as demonstrated by Allen &
Ingram (2002).

The assumption that the relative roles of GHGs and aerosols should remain
constant, as predicted by models was relaxed by Stott & Kettleborough (2002)
who calculated separate scaling factors on the response patterns in HadCM3 to
GHG and aerosols as well as including the response to natural forcings in the
analysis. Probabilistic forecasts of global mean temperatures were obtained for
four representative SRES emission scenarios. They also included uncertainty due
to future natural forcings by adding variance to the distribution calculated from
simulations of the response to past natural forcing. Global mean temperature rise
was found to be insensitive to differences in emissions scenarios over the first few
decades of the twenty-first century; a temperature rise of 0.3–1.3 K was predicted
by the 2020s relative to the 1990s (figure 6). As discussed by Zwiers (2002), this
range is consistent with an estimate using the alternative LE approach for
estimating forecast uncertainty described in §2 (Knutti et al. 2002).
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Figure 7. Probability density functions for global mean temperature for the A2 (solid lines) and B1
(dashed lines) scenarios for (a) 2020–2030, (b) 2050–2060 and (c) 2090–2100 relative to the
1980–2000 average as constrained by observed twentieth century temperature change and as
calculated using HadCM3 model (red), PCM model (green) and GFDL R30 model (blue). In each
panel, results are compared against histograms of distributions derived using MIT IGSM using
Forest et al. (2006) data (black lines). Also shown as coloured stars are the raw model predictions
for each model for the A2 scenario and as diamonds the raw HadCM3 prediction for the B1
scenario. (d ) The same distributions for 2090–2100 plotted as cumulative distribution functions.
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Although Stott & Kettleborough (2002) found little difference between
scenarios in early decades, large differences emerge by the end of the century.
Warming as high as 6.9 K (relative to 1990s temperatures) cannot be ruled out at
the 95% confidence level in the SRES A1FI scenario (figure 6). Stott &
Kettleborough (2002) also showed that as the signal of climate strengthens, the
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uncertainty in future temperature rise is likely to reduce, potentially halving
uncertainties in late twenty-first century warming by 2020 when compared with
values estimated in 2000 (figure 6). The range of warming under the B2 scenario
is 1.6–3.7 K by the 2090s decade relative to the 1990s decade. This is close to the
estimate shown in figure 5 for the temperature range expected under the A1B
scenario calculated according to the LE method and discussed in §2a. The A1B
range is slightly higher reflecting its slightly higher emissions than B2. An
examination of the sensitivity of the results to varying the size of the
temperature variance assumed to result from future natural forcings was found
by Kettleborough et al. (2007) to make relatively little difference to future
warming rates, especially late in the century when the strengthening greenhouse
signal and corresponding increase in the uncertainty in the transient response to
the increasing GHGs dominates the overall uncertainty. The linear relationship
between past and future warming assumed in this approach would not hold if
there were large nonlinear feedbacks in future such as a shutdown of the THC or
land biosphere switching from a weak sink for carbon to a strong source.

Whereas Stott & Kettleborough (2002) analysed only the HadCM3 model,
Stott et al. (2006b) extended the analysis to three climate models (HadCM3,
PCM and GFDL R30), all of which had ensembles of simulations including
GHGs only (GHG), combined anthropogenic forcings (ANTHRO) and
simulations from which the response to natural forcings could be estimated
(either natural forcings for HadCM3 and PCM, or the response to all forcings for
GFDLR30). The results shown in figure 7 show little difference between the A2
and B1 scenarios in the 2020s but an increasing separation of the two scenarios
later in the century. Some structural uncertainty remains in the probable range
of future temperature change according to which model is used (comparing red,
blue and green curves in figure 7), although the lower sensitivity PCM
predictions (green stars) are consistently scaled up more than predictions from
the higher sensitivity GFDLR30 and HadCM3 models. The equivalent
uncertainty ranges derived using the MIT IGSM (§2a) are consistent with
those derived by the ASK methodology but are generally narrower, indicating
that tighter constraints are derived using the EMIC LE-based approach.

The TCR is the global-mean surface temperature change that is realized at the
time of CO2 doubling under an idealized scenario in which CO2 concentrations
increase at 1% per year. TCR, like equilibrium climate sensitivity (ECS, the
equilibrium temperature change resulting from CO2 doubling), is a basic
property of the climate system, but TCR is more relevant to determining the
near-term climate change than ECS because it includes the delaying effects of
mixing heat into the deep ocean. An ASK-based observationally constrained
estimate of the TCR can be obtained in the same way as the transient response
under SRES scenarios. In this case, the model’s TCR is scaled by the scaling
factor on GHG as obtained from the full ASK approach. Observationally
constrained estimates of TCR are shown in figure 8 for estimates using the three
models and are compared with TCRs (diamonds) from the multi-model ensemble
archived at PCMDI for input into the IPCC fourth assessment report (AR4) and
the range of TCR calculated by Forest et al. (2006). The unweighted average
from the three models is also shown as was calculated by Stott et al. (2006b). We
note that three cases is a small sample size to represent results accounting for
both structural uncertainty in AOGCM models and the structural (or
Phil. Trans. R. Soc. A (2007)
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methodological) uncertainty of the STAID approach. The similarity of the
results indicates the method’s robustness while the differences remain
unexplored. As for the distribution of IPCC AR4 models (diamonds in figure 8),
there are more in the lower half than the upper half of the observationally
constrained distributions (solid curve and horizontal bar), indicating a tendency
for models to overestimate ocean heat uptake (since increased transient heat
uptake dampens the atmospheric warming response to radiative forcing requiring
a stronger response to still match observations; Forest et al. 2002; Knutti et al.
2005). This is consistent with the result found by Forest et al. (2006) who
showed, using the LE methodology described in §2a, that AOGCMs generally
mix heat into the deep ocean too efficiently, as shown in figure 1.

The robustness of the relationship between warming attributable to GHGs and
TCRwas also investigated byFrame et al. (2006) using anEBM, finding a regression
line of 2.22 between past attributable greenhouse warming and TCR. The
relationship can also be deduced simply from the ratio of the forcing at doubling
CO2 (approx. 3.74 W mK2 per 70 years) to the forcing over the twentieth century
(approx. 1.66 W mK2 per century) which at 2.25 is close to the estimate deduced by
Frame et al. (2006) (M. R. Allen 2006, personal communication). A range in
attributable greenhouse warming (5–95 percentiles) of 0.7–1.3 K for the range of
models then translates into a range for TCR of 1.5–2.8 K. The 5–95 percentile range
of TCR derived by Forest et al. (2006) is 1.5–2.3 K and is also shown in figure 8.

Splitting the observed response into contributions from the response to GHGs
and to other anthropogenic forcing allows an estimate not only of the TCR but
Phil. Trans. R. Soc. A (2007)
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also of the probable net forcing of the climate system, uncertainty in which is
dominated by the forcing due to aerosols. From estimates of the scaling factors
on GHG and ANTHRO, we can estimate the scaling factors on the GHG only
signal (G) and the contribution from other anthropogenic factors (mainly
aerosols, denoted S ) by a linear transformation, assuming that the climate
response to these forcings is linearly additive. This linearity assumption appears
to hold reasonably well on large spatial scales (Gillett et al. 2004; Meehl et al.
2004). The probable range of aerosol cooling is inferred from these analyses by
scaling the raw aerosol forcing in each model by the ratio of the scaling factors for
S and G (the PDF of bS/bG). This takes account of observational constraints on
the climate response by assuming that the GHG forcing is well known and that
errors in the response of the model to different forcings scale equally. Note that
the HadCM3 model-derived pattern also includes tropospheric and stratospheric
ozone in addition to the direct and indirect effects of sulphate aerosols; the PCM
model includes tropospheric and stratospheric ozone in addition to the direct
effects of sulphate aerosols; and the GFDL R30 model includes only the direct
effects of sulphate aerosols.

The estimates derived from the three models, shown in figure 9, are broadly
consistent with other inverse estimate of aerosol forcing based on observational
constraints (Andronova & Schlesinger 2001; Knutti et al. 2002, 2003; Forest et al.
2006) and appear to exclude larger magnitudes of aerosol forcing derived from
forward calculations (Anderson et al. 2003; see also §2a). Note that all these
Phil. Trans. R. Soc. A (2007)
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estimates of net aerosol forcing also implicitly include any forcings that are not
explicitly included in the analysis. As an example, the GFDL model does not
include the effects of tropospheric and stratospheric ozone. This means that the
GFDL uncertainty estimate implicitly includes the missing ozone forcing, in
addition to any other missing forcings.

Also, an estimate of the aerosol forcing based on the attribution analyses using
a particular model will have unquantified uncertainties resulting from
inadequacies in the treatment of aerosols in that model, such as, for example,
omitting the indirect effects of sulphate aerosols, as is the case with the
GFDLR30 and PCM models. The scaling procedure (equation (2.3)) will correct
for gross model error. For example, to the extent that patterns of response to the
direct and indirect effects of aerosols are similar, the procedure will correct for
the omission of the indirect effects of aerosols in those models. However,
differences between the real world’s patterns of temperature response to the
direct and indirect effects of aerosols will lead to errors in the aerosol forcing
calculated by this method. By sampling different models, as is done in figure 9,
the uncertainty introduced by these errors is sampled, but only to a limited
extent where only three models are analysed.
3. Extension to regional scales and other climate variables

The above discussion has mainly concentrated on recent progress in developing
probabilistic predictions of global mean temperature change. However, regional-
scale probabilistic predictions are required in order to adapt to the probable
effects of climate change, as well as plan mitigation strategies which reduce the
risk of exceeding local thresholds of extreme weather. In addition to regional
predictions of temperature, probabilistic predictions of other variables will be
required such as precipitation and circulation changes and changes in extremes
as well as mean quantities will be needed.

A first step in extending the ASK approach to sub-global scales was made by
Stott et al. (2006a) who considered six continental-scale areas. An estimate was
made of continental-scale temperature by carrying out an optimal detection
analysis on each of the six continents separately, which showed that a significant
human influence was detected in each of these six regions (Stott 2003). Then, by
assuming a linear relationship between fractional errors in past and future
temperature changes over these continental regions, probabilistic predictions of
future continental mean temperature change were obtained in the same way as
for global mean temperature. The results based on HadCM3 gave large
uncertainty ranges for future continental mean temperatures if emissions are
assumed to follow the SRES A2 scenario of 2–12 K and 2–11 K relative to 1990s
values for Europe and North America, respectively.

By analysing each continent separately, this approach does not exploit the
observational constraints provided by any possible relationships between
warming rates in different continents. A lower limit on the possible uncertainty
range was obtained by Stott et al. (2006a) by assuming that the spatial pattern of
temperature change simulated by HadCM3 is correct and scaling future
projections according to the fractional error in the global mean temperature.
This approach gave much tighter uncertainty ranges for the SRES A2 emission
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scenario of 4–8 K for North America and 4–7 K for Europe. However, this result
is conditional as there being no additional uncertainty in the spatial patterns of
response. This is not the case since different climate models do not have identical
patterns of response and therefore climate models with different spatial patterns
of response are likely to give different ranges of uncertainty when scaled by
scaling factors derived from a global mean analysis of the model.

The standard optimal detection methodology has recently been extended to
take account of the modelling uncertainty in the spatial patterns of response and
this approach could be applied in future to estimate uncertainties in future
climate change at sub-global scales. Huntingford et al. (2006) include an estimate
of the inter-model covariance structure in the regression method and calculate
attributable global mean temperature changes based on an analysis of three
models simultaneously (the same three models analysed by Stott et al. (2006b),
namely HadCM3, GFDLR30 and PCM). They found a tighter constraint of
global mean greenhouse attributable warming than seen in individual models of
0.8–1.1 K, indicating that for global mean temperature, the reduction in
uncertainty due to the EIV method accessing in effect a larger ensemble
outweighs any increase in uncertainty due to the inter-model covariance
structure. This range of attributable greenhouse warming translates into a
range for TCR of 1.8–2.4 K (based on a ratio between attributable greenhouse
warming and TCR of 2.22; see §2b). While this gives tighter constraints for
attributable global mean warming rates, and therefore TCR, it also provides an
estimate of attributable patterns of change that includes modelling uncertainty.
Such an approach could therefore be used to provide a more accurate estimate of
future uncertainties in continental-scale temperature changes that lies between
the upper and lower limits provided by Stott et al. (2006a).

To apply such approaches, ensembles of coupled model simulations are
required with different forcings for a range of different models. Only large multi-
model multi-forcing ensembles of this sort are capable of characterizing the
structural uncertainty resulting from model formulation (perturbing parameter
choices in one particular model does not explore the structural uncertainty
obtained when parameter choices from multiple different models are perturbed).
Such structural uncertainty is likely to be a more important component of the
uncertainty in regional-scale predictions than that of global-scale predictions.
While many modelling centres have made simulations of past climate change
including both anthropogenic and natural forcings combined (e.g. for the IPCC
AR4) and a smaller number of modelling centres have also made simulations
including only natural forcings, a relatively small number of models have been
run with the full range of transient simulations required for an ASK analysis.
Ideally, transient simulations of past climate change are required that can
separate the effects of GHGs from other anthropogenic forcings, with these
simulations continuing into the future with the same combinations of forcings
(according to a particular emissions scenario). This enables a separation of the
fractional error in TCR from the fractional error in forcings. Therefore, to fully
characterize uncertainty in regional predictions requires multi-model multi-
forcing ensembles of coupled models.

Further information about probable future climate changes can be found by
searching coupledmodel ensembles for emergent constraints. Allen& Ingram (2002)
finda consistentphysicallybased relationshipbetweenglobalmeanprecipitationand
Phil. Trans. R. Soc. A (2007)
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global mean temperature, which they use to provide a probabilistic prediction for
precipitation based on a probabilistic distribution for future temperature changes
based on the EMIC-based calculation of Forest et al. (2002). A similar type of
approach has been used to derive probabilistic estimates of climate sensitivity based
onmodel-derived relationships between climate sensitivity and observable variables
such as the seasonal cycle (Piani et al. 2005; Knutti et al. 2006).
4. Summary and discussion

In this paper, we have shown that two different approaches for constraining climate
predictions based on observations of past climate change produce consistent
probabilistic predictions, indicating that the observed record contains robust
information that provides important constraints on future climate changes.

The two approaches described in this paper, the EMIC-based approach and
the ASK approach, differ most in their treatment of errors. While the ASK
approach works well for scenarios of steadily increasing forcing, for stabilization
scenarios, the relative fractions of forcing components will not be the same as in
the twentieth century and so the system will be extrapolating beyond the
calibration sample. In the LE approach, the model–observations comparison
provides error estimates first for climate system properties (S, Kv, Faer, etc.), or
potentially feedbacks directly, and then the uncertainty in these properties are
propagated with a dynamical model. As such the patterns of climate changes are
allowed to evolve in the LE approach based on the model dynamics rather than
being held fixed by a pattern-scaling approach.

While EMICs are well suited for exploring the large-scale effects of coupling
between different components of the climate system, EMICs do not include the
full range of processes incorporated in AOGCMs and their highly parametrized
representation of climate processes and their coarse resolution mean that they
are not well suited for quantifying uncertainty in regional climate change or
extreme events. In addition, because ocean dynamics are important for
determining regional feedbacks (Boer & Yu 2003), climate models require a
full three-dimensional dynamic ocean component if they are going to represent
future regional climate changes. Therefore, for informing regional adaptation
policies, AOGCMs are required. Also, their high resolution and detailed
parametrizations means that only AOGCMs are able to properly represent
internal variability, and the EMIC-based analyses require AOGCM-based
estimates of internal variability.

A potential shortcoming of both approaches is the inadequate sampling of the
noise-covariance matrices by the control simulations. This becomes a more serious
problem at smaller scales since a greater number of degrees of freedom is needed to
describe regional patterns of climate change. In addition, the true number of degrees
of freedom in the observational data is probably much smaller than is currently
assumed and treatment of observational errors needs to be improved.

In summary, the evidence consistently provided by both approaches is that
significant future warming is likely to follow from continued emissions of
anthropogenic GHGs. Even targeted emissions reductions (to achieve approxi-
mate stabilization at 550 ppm for CO2 concentrations in 2100) will very probably
lead to future warming rates greater than 1 K by 2100 when compared with 2000,
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which could imply significant impacts (Hansen et al. 2006). The inevitable
necessity to adapt to some level of climate change underlines the importance of
probabilistic predictions of future climate change.

P.A.S. funded by the UK Department of the Environment, Food and Rural Affairs under contract
PECD 7/12/37. C.E.F. was funded partially by US NSF and thanks to A. Sokolov and M. Webster
for their help with MIT IGSM results.
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